دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه ایوا

3 ایوا

چکیده

ساخت داده های ناقص (گمشده) موجود در مشاهدات ایستگاه های سینوپتیک با استفاده از روش های پیشرفته، استاندارد و دقیق در سطح جهانی اهمیت بسزایی در مطالعات هواشناسی کشاورزی و شبیه سازی عملکرد گیاهان زراعی دارد. لذا این پژوهش با هدف امکان سنجی استفاده از داده های AgMERRA برای تخمین داده های گمشده انجام شد. در این تحقیق با استفاده از خصوصیات جغرافیایی ایستگاه های مرجع گلمکان و مشهد داده های متناظر با دشت مشهد استخراج شد. با استفاده از روش های ارزیابی کارایی مدل ها شامل ضریب همبستگی، جذر میانگین مربع خطا، میانگین خطای مطلق و انحراف نتایج، واسنجی داده های AgMERRA انجام گرفت. نتایج واسنجی حاکی از قدرت بالای این مجموعه در شبیه سازی حداکثر و حداقل دمای روزانه بود. اگرچه مقادیر پارامترهای ارزیابی کارایی مدل برای بارندگی نیز در سطح قابل قبولی بود با این وجود ضریب همبستگی بارندگی روزانه بین داده های AgMERRA و داده های ایستگاهی برای ایستگاه های گلمکان و مشهد به ترتیب 25/0 و 43/0 بود. مقایسه توزیع احتمال تجمعی داده های مشاهده شده با داده های AgMERRA طی کل دوره مورد مطالعه برای ایستگاه های گلمکان و مشهد، نشان داد که داده های مورد استفاده از هر دو منبع از روند مشابهی تبعیت می کنند. با این وجود، تفاوت میانگین حداکثر دمای روزانه، حداقل دمای روزانه و بارندگی روزانه مشاهده شده و شبیه سازی شده طی دوره 30 ساله مورد مطالعه برای ایستگاه مشهد به ترتیب42/3 درجه سانتیگراد، 68/4 درجه سانتیگراد و 06/0 میلی متر در روز بود و این مقادیر برای ایستگاه گلمکان طی دوره 23 ساله مورد مطالعه به ترتیب 10/2 و 05/3 درجه سانتیگراد و 28/0 میلی متر در روز بود. بطور کلی نتایج حاصل از این پژوهش نشان داد که برای اطمینان از دقت این داده ها تعداد ایستگاه های بیشتری مورد مطالعه قرار گیرد تا از این طریق میزان دقیق تری از قدرت این داده ها در شبیه سازی بارندگی نیز بدست آید.

کلیدواژه‌ها

عنوان مقاله [English]

Applicability of AgMERRA forcing dataset forgap-filling of in-situ meteorological observation, Case Study: Mashhad Plain

نویسندگان [English]

  • A. Lashkari 1
  • Mohammad Bannayan Aval 1
  • A. Koocheki 1
  • A. Alizadeh 1
  • Y. S. Choi 2
  • S.-K. Park 3

1 Ferdowsi University of Mashhad

2 Ewha Womnas University

3 Ewha Womnas University

چکیده [English]

Introduction: Consistency and transparency in climate data and methods facilitate comparisons across regions or between models in each of these assessments, particularly when market linkages between regions are emphasized (14 and 15). However, the density and quality of stationary climate data varies widely through space and time, with the best coverage in developed countries and less reliable coverage in the Tropics and Southern Hemisphere (15). So, several groups have collected these data and constructed harmonized, global gridded datasets at monthly resolution. However, these require weather generators synthesize daily resolution before they may be applied to crop models and are therefore likely to miss events that are important for the calibration and validation of agricultural models. Regional gridded observational networks have also been created (e.g., E-Obs in Europe, (8); APHRODITEin Asia, (21)), however many regions and variables are not covered by any such network and inter comparing sites between regions with different methodologies introduces inconsistencies (). Recently, AgMERRA climate forcing dataset provide daily, high-resolution, continuous, meteorological series over the 1980–2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA) with in situ and remotelysensed observational datasets fortemperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparisonto a network of 2324 agriculturalregion stations from the Hadley Integrated Surface Dataset (HadISD) (5).Therfore, this research was done in order to investigate the possibility of using AgMERRA climate forcing dataset to estimate missing data in in-situ daily temperature and precipitation observations in Mashhad plain.
Materials and Methods: The study area was Mashhad plain in KhorasanRazavi province, located in the northeast of Iran. Climate data corresponding to Mashhad plain extracted by means of geographical characteristics of Mashhad (for the 1980-2010 periods) and Golmakan (1987-2010 period) stations from AgMERRA dataset. The goodness of fit of AgMERRA climate forcing dataset was done by means of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) tests and R2. The root mean-squared error (RMSE) is computed to measure the coincidence between measured and modelled values and Mean Bias Error (MBE) is simply to examine the overall model error.Furthermore, probability distribution function of observed daily data and AgMERRA data for both Golmakan and Mashhad stations calculated. Eventually, mean and variance of AgMERRA and in-situ data were calculated to have a more accurate comparison of simulated and observed data.
Results: Results indicated that AgMERRA dataset has a good performance in estimating daily maximum and minimum temperature in Mashhad Plain. RMSE, MAE and MBE for daily precipitation illustrated a good performance of AgMERRA data. However, R2 value was 0.43 and 0.25 for Mashhad and Golmakan stations, respectively. Although the probability distribution function of daily maximum and minimum temperature and precipitation indicated the same trend for both studied stations, comparison of mean and variance of observed daily maximum and minimum temperature and precipitation and AgMERRA data for Mashhad and Golmakan stations showed different results. The difference between mean of AgMERRA and observed daily maximum temperature for Mashhadand Golmakan stations was 3.42 and 2.10 C°, respectively. It was 4.68 and 3.05 C° for minimum daily temperature for Mashhad and Golmakan, respectively, and the difference between mean of AgMERRA and observed daily precipitation was 0.06 and 0.28 mm.day-1 for Mashhad and Golmakan, respectively.
Discussion and Conclusion: This research showed that using AgMERRA climate forcing dataset could be a reliable tool to estimate missing data of in-situtemperature observations. Although the performance of AgMERRA dataset was good for daily precipitation, distribution of simulated precipitation compare with observed precipitation was different. Concerning AgMERRA precipitation data some points have to keep in mind that precipitation in arid and semi-arid regions tends to be more variable in time than in humid regions. In fact, the distinctive features of arid and semiarid regions affect precipitation modeling on a discrete event basis and a continuous basis (7, 10, 13).Results of this research illustrated the same trend and it revealed that AgMERRAdataset could not simulate the precipitation distribution in Mashhad plain. It seems that comparing AgMERRAprecipitation data with OPHRODITE dataset and other dataset can give us more accurate vision about AgMERRA dataset. Furthermore, it seems that it is needed to do more researches regarding investigation of performances of crop model results by using AgMERRA dataset as climate data input, because this dataset was released for agricultural application.

کلیدواژه‌ها [English]

  • AgMERRA
  • Estimating Missing Data
  • Precipitation- Temperature
1- Allen R.J., and De Gaetano A.T. 2001. Estimating missing daily temperature extremes using an optimized regression approach. International Journal of Climatology, 21: 1305–1319.
2- Anonymous. 2013. Solutions for Sustainable Agriculture and Food Systems. Technical report for the post-2015 development Agenda. Prepared by the Thematic Group on Sustainbale Agriculture and Food Systems of the Sustainable Development Solutions Network.
3- Ashraf B., Yazdani R., Mousavi-Baygi M., and Bannayan M. 2013. Investigation of temporal and spatial climate variability and aridity of Iran. Theoretical Applied Climatology, 118: 35-46.
4- Bannayan M., Mohammadian A., and Alizadeh A. 2010. On Climate Variability in North-East of Iran. Journal of Water and Soil, 24 (1): 118-131
5- Dunn R.J.H., Willett K.M., Thorne P.W., Woolley E.V., Durre I., Dai A., Parker D.E., and Vose R.S. 2012. HadISD: a quality-controlled global synoptic reportdatabase for selected variables at long-term stations from 1973–2011. Climate of the Past, 8: 1649–1679.
6- Ghagourian H., and SanaeiNejad H. 2013. Drought monitoring using TRMM dataset in RazaviKhorasan Province. MSc thesis in Agrometeorology, Ferdowsi University.
7- GhazanfariMoghaddam M.S., Alizadeh A., MousaviBaygi S.M., Faridhosseini A.R., and Bannayan M. 2011. Comparison the PERSIANN Model with the Interpolation Method to Estimate Daily Precipitation (A Case Study: North Khorasan).Journal of Water and Soil, 25 (1): 207-2015.
8- Haylock M.R., Hofstra N., Klein Tank A.M.G., Klok E.J., Jones P.D., New M. 2008. A European daily high-resolution gridded data set of surface tem-perature and precipitation for 1950–2006. Journal of Geophysical Research. 113, D20119, http: //dx.doi.org/ .1029/ 2008JD010201.
9- Iizumi T., Okada M., and Yokozawza M. 2014. A meteorological forcing data set for global crop modeling: Development, evaluation, and intercomparison. Journal of Geophysical Research: Atmospheres, 119 (2): 363–384
10- Jamei M., MousaviBaygi S.M., and Bannayan M. 2014. Comparison of daily precipitation of APHRODITE network and results of spatial interpolation of precipitation in Khozestan Province. 2th National Conference on Agrometeorology.
11- Joyce R.J., Janowiak J.E., Arkin P.A., and Xie P. 2004.” CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5: 487- 503
12- Maggioni V., Sapiano M.R.P., Adler R.F., Tian Y., and Huffman G.J. 2014. An Error Model for Uncertainty Quantification in High-Time-Resolution Precipitation Products. Journal of Hydrometeorology, 15, 1274–1292.
13- Pilgrim D.H., Chapman T.G. andDoran D.G. 1998. Problems of rainfall-runoff modeling in arid and semiarid regions. Hydrological Sciences Journal, 33 (4) 379-400.
14- Rosenzweig C., Elliott J., Deryng D., Ruane A.C., Müller C., Arneth A., Boote K.J., Folberth C., Glotter M., Khabarov N., Neumann K., Pionteke F., Pugh T.A.M., Schmid E., Stehfest E., Yang H., and Jones J.W. 2013. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceeding of the National Academy of Science of the United States of America, 111(9): 3268–3273.
15- Ruane A.C., Goldberg R., Chryssanthacopoulos J. 2015. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200: 233-248.
16- Shabani B., MousaviBaygi, M., JabariNoghabi M., and Ghareman B. 2013. Modeling and Prediction of Monthly Max &MinTemperatures of Mashhad Plain Using Time Series Models. Journal of Water and Soil, 27 (5): 896-906
17- Sheffield J., Goteti G., Wood E.F., 2006. Development of a 50-year high-resolutionglobal dataset of meteorological forcings for land surface modeling. Journal of Climatology, 3088–3111
18- Tardivo G., and Berti A. 2012. A Dynamic Method for Gap Filling in Daily Temperature Datasets. Journal of Applied Meteorology and Climatology. 51, 1079–1086.
19- Wallach D., Makowski D., and Jones J.W. 2007. Working with dynamic crop models. Elsevier.
Weedon, G. P., Gomes, S., Balsamo, G., Best, M. J., Bellouin, N., and Viterbo, P. 2012. README file for the “WFDEI” dataset. Version: September 18th, 2013, Availableat www.eu-watch.org/data availability
20- Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., Kitoh A. 2012.APHRODITE: constructing a long-term daily gridded precipitation dataset forAsia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93:1401–1415.
CAPTCHA Image