دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه تهران

چکیده

سرریز جانبی به عنوان یک سازه کنترل و اندازه‌گیری جریان به صورت گسترده‌ در زمینه‌هایی نظیر مهندسی هیدرولیک، آبیاری و محیط زیست مورد استفاده قرار می‌گیرد. جریان روی سرریز جانبی به عنوان یکی از مسائل جریان متغیر مکانی با کاهش بده شناخته شده و با استفاده از روش‌های آزمایشگاهی، مدل‌سازی عددی و تحلیل نظری بررسی می گردد. تحقیق حاضر به بررسی خصوصیات جریان روی سرریز جانبی ذوزنقه‌ای واقع در یک کانال اصلی با مقطع مستطیلی و در شرایط رژیم جریان زیربحرانی می‌پردازد. پروفیل جریان بر روی سرریز جانبی و ضریب بده جریان با استفاده از نتایج آزمایشگاهی مورد بررسی و تحلیل قرار گرفته است. با توجه به نتایج این تحقیق و توصیه محققین پیشین، بهترین مقطع برای اندازه‌گیری پروفیل جریان در امتداد محور مرکزی کانال معرفی شده است. مشخص گردید که ضریب بده سرریز جانبی ذوزنقه‌ای به عدد فرود جریان بالادست، نسبت ارتفاع سرریز به عمق جریان، نسبت ارتفاع روگذری به عمق جریان و شیب جداره سرریز بستگی دارد. در این تحقیق برای ارزیابی ضریب بده و ارائه معادله بده برای سرریز جانبی، از تئوری سرریز معمولی استفاده شده است. برای این منظور از سه عمق مشخصه به عنوان هد سرریز استفاده شد و بر اساس هر یک از این اعماق رابطه‌ای برای ضریب بده ارائه گردید. مقایسه نتایج با داده‌های آزمایشگاهی نشان داد که عمق متوسط جریان بهترین جواب را برای ارزیابی ضریب بده ارائه می کند. متوسط خطای برآورد ضریب بده با استفاده از عمق متوسط جریان برابر با 6/2 درصد می‌باشد. لذا می‌توان این روش را برای مقاصد عملی پیشنهاد نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Discharge Computation of Trapezoidal Side Weir in Subcritical Flow Regime Using Conventional Weir Theory

نویسندگان [English]

  • S. Riahi 1
  • A.R. Vatankhah 2

1 Tarbiat Modares University

2 University of Tehran

چکیده [English]

Introduction: Side weir structures are extensively used in hydraulic engineering, irrigation and environmental engineering, and it usually consists of a main weir and a lateral channel. Side weirs are also used as an emergency structure. This structure is installed on one side or both sides of the main channel to divert the flow from the main channel to the side channel. Lateral outflow takes place when the water surface in the main channel rises above the weir sill. Flow over a side weir is a typical case of spatially varied flow with decreasing discharge. There have been extensive studies on side weir overflows. Most of the previous theoretical analysis and experimental research works are related to the flow over rectangular side weirs in rectangular main channels. In the current study, the flow conditions over a trapezoidal side weir located in a rectangular main channel in subcritical flow regime is considered.
Materials and Methods: The experiments were performed in a rectangular open channel having provisions for a side weir at one side of the channel. The main channel was horizontal with 12 m length, 0.25 m width, and 0.5 m height, and it was installed on a frame; lateral channel that has a length of 6 m, width of 0.25 m, and height of 1 m. It was set up parallel to the main channel; walls and its bed were made up of Plexiglas plates. The side weir was positioned at a distance of 6 m from the channel’s entrance. A total of 121 experiments on trapezoidal side weirs were carried out.
Results and Discussion: For trapezoidal side weir, effective non-dimensionnal parameters were identified using dimensional analysis and Buckingham's Pi-Theorem. Finally, the following non-dimensional parameters were considered as the most effective ones on the discharge coefficient of the trapezoidal side weir flow.

in which Fr1= upstream Froude number, P= hight of the trapezoidal side weir, y1= upstream water depth, z=side slope of the trapezoidal side weir and T=top flow width of the trapezoidal side weir. Water surface profiles were measured along the weir crest, the main channel centerline, and far from the weir section. Different elevations in water surface profile depend on the upstream Froude number in the main channel; depth differences in low Froude numbers are at minimum values, and in high Froude numbers are at maximum amounts. The water surface level along the crest drops at the entrance of the side weir to the first half of the side weir; and it has been attributed to the side weir entrance effect at the upstream. Afterwards, the water level rises towards the downstream of the weir. According to the experimental results, measurements of the water in the centerline of the main channel are reliable and water surface drop is negligible. According to the parameters affecting the discharge coefficient for each value of z, discharge coefficient equations were developed with acceptable accuracy such that the effects of this parameter were shown separately. Finally, the general equation was proposed. The general functional form for discharge coefficient is presented as follows where the effect of the side slope parameter, z, is also considered.

The mean and maximum percentage errors of the discharge coefficient computed using the proposed equation are as 2.6% and 11.5% , respectively.

Conclusion: In this study, the characteristics of trapezoidal side weir overflows in subcritical flow regime were discussed. For this purpose, experimental data related to the water surface profile of the side weir and discharge coefficient were collected and analyzed. The results showed that the most efficient section for measuring water surface profile is located at the center line of the main channel. It was found that for trapezoidal side weir, the discharge coefficient depends on the Froude number, the ratio of crest height to initial depth, the overflow length to initial depth, and the side slope of the weir. In this study, conventional trapezoidal weir theory has been used in order to evaluate the discharge coefficient and provide side weir discharge equation. For this purpose, three reference depths were considered for conventional weir, and for each depth an equation was developed for the discharge coefficient. Comparison between predicted values and experimental data showed that average flow depth results in accurate outcomes for assessing the discharge coefficient. The average value of error for discharge coefficient estimation by the proposed equation is 2.6%. Thus this equation is proposed for use in practice by water engineers.

Keywords: Control structure, Conventional weir, Discharge coefficient, Spatially varied flow, Trapezoidal side weir, Water surface profile

کلیدواژه‌ها [English]

  • Control structure
  • Conventional weir
  • Discharge coefficient
  • Spatially varied flow
  • Trapezoidal side weir
  • Water surface Profile
- Agacciouglo H., and Yuksel Y. 1998. Side weir flow in curved channels. Journal of Irrigation and Drainage Engineering, 124(3):163-175.
2- Borghei S.M., Jalili M.R., and Ghodsian M. 1999. Discharge coefficient for sharp-crested side weir in subcritical flow. Journal of Hydraulic Engineering, 125(10): 1051–1056.
3- Bos M.G. 1975. Discharge Measurement Structures. Oxford & IBH Publishing Co. New Delhi.
4. Castro-Orgaz O., and Hager W. 2012. Subcritical Side-Weir Flow at High Lateral Discharge. Journal of Hydraulic Engineering, 138(9): 777–787.
5. Cheong H.F. 1991. Discharge coefficient of lateral diversion from trapezoidal channel. Journal of Irrigation and Drainage Engineering, 117(4):461-475.
6- Cosar A., and Agaccioglu H. 2004. Discharge coefficient of a triangular side-weir located on a curved channel. Journal of Irrigation and Drainage Engineering, 130(5): 410–423.
7- De Marchi G. 1934. Saggio di teotia de funzionamenta degli stramazzi laterali, L’Energia Electricia, Rome, Italy, 11:849-860 (in Italian).
8- El-Khashab A., and Smith K.V.H. 1976. Experimental investigation of flow over side weirs. Journal of Hydraulics Division. 102(9): 1255-1268.
9- Emiroglu M.E.Agaccioglu H., and Kaya N. 2011. Discharge capacity of rectangular side weir in straight open channels. Flow measurement and instrumention, 22(4): 319-330.
10- Ghodsian M. 2003. Supercritical flow over rectangular side weir. Journal of Civil Engineering, 30(3):596–600.
11- Ghodsian M. A. S. O. U. D. 2004. Flow over triangular side weir. Scientia Iranica, 11(1-2): 114-120.
12- Hager W.H. 1987. Lateral outflow over side weirs. Journal of Hydraulic Engineering, 4(3): 491-504.
13- Honar T., and Keshavarzi A. 2009. Effect of rounded‐edge entrance on discharge coefficient of side weir in rectangular channels. Journal of Irrigation and Drainage Engineering ,58(4): 482-491.
14- Kumar C.P., and Pathak S.K. 1987. Triangular side weir. Journal of Irrigation and Drainage Engineering. 113(1): 98-105.
15- Muslu Y. 2001. Numerical analysis for lateral weir flow. Journal of Irrigation and Drainage Engineering, 127(4):246–53.
16- Muslu Y. 2002. Lateral weir flow model using a curve fitting analysis. Journal of Hydraulic Engineering, 128(7):712–715.
17- Rahimpour M., Keshavarz Z., and Ahmadi M.M. 2011. Flow over trapezoidal side weir. Flow Measurement and Instrumentation, 22(6): 507-510.
18- Ranga Raju K.G., Gupta S.K., and Prasad B. 1979. Side weir in rectangular channel. Journal of the Hydraulics Division, 105(5): 547-554.
19- Singh R., Manivannan D., and Satyanarayana T. 1994. Discharge coefficient of aside weirs. Journal of Irrigation and Drainage Engineering, 120(4): 814 – 819.
20- Subramanya K., and Awasthy S.C. 1972. Spatially varied flow over side weirs. Journal of the Hydraulics Division, 98(1): 1-10.
21- Swamee P.K., Pathak S.K., and Ali M.S. 1994. Side weir analysis using elementary discharge coefficient. Journal of irrigation and drainage engineering, 120(4):742–755.
22- Swamee P.K., Pathak S.K., Mohan M., Agrawal S.K., and Ali M.S. 1994. Subcritical flow over rectangular side weir. Journal of irrigation and drainage engineering, 120(1): 212-217.
23- Uyumaz A., and Smith R.H. 1991. Design procedure for flow over side weirs. Journal of irrigation and drainage engineering, 117(1): 79-90.
24- Vatankhah A.R. 2012. Analytical solution for water surface profile along a side weir in a triangular channel. Flow Measurement and Instrumentation, 23(1), 76-79.
25- Vatankhah A.R. 2012. Water surface profile over side weir in a trapezoidal channel. Proceedings of the ICE-Water Management, 165(5): 247-252.
26- Ventutelli M.E. 2008. Method of solution non uniform flow with the peresence of rectangular side weirs. Journal of irrigation and drainage engineering, 134(6):840-846.
27- Yu-Tech L. 1972. Discussion of spatially varied flow over side weir. Journal of the Hydraulics Division, 98(11):2046–2048.
CAPTCHA Image