دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد اراک

2 دانشگاه شهید چمران اهواز

3 دانشگاه ارومیه

چکیده

رفع نیاز گیاهان زراعی به عناصر غذایی توسط منابع غیر شیمیایی رویکردی جدید در تولید گیاهان سالم است. پژوهشی در سال زراعی
1392-1391 در مزرعه تحقیقاتی دانشگاه شهید چمران اهواز اجرا شد. طرح آزمایشی به صورت فاکتوریل در قالب بلوک کامل تصادفی و در 3 تکرار بود. عوامل آزمایش شامل باکتری آزوسپیریلوم لیپوفروم در دو سطح (تلقیح و عدم تلقیح)، قارچ مایکوریزا در سه سطح (عدم کاربرد، استفاده از گونه‎های گلوموس موسه و گلوموس اینترارادیسز) و ارقام گندم در سه سطح (چمران، دنا و بهرنگ) بود. بررسی محتوای عناصر در ریشه و دانه نشان از تأثیر مثبت و معنی‌دار کاربرد قارچ مایکوریزا و آزوسپیریلوم در ارتقای غلظت عناصر در ارقام گندم را داشت، البته کاربرد توأم این ریزموجودات، منجر به افزایش اثرات کاربرد آن‎ها بر صفات برآوردی شد. نهایتاً، بیش‌ترین غلظت نیتروژن (21/2 درصد)، فسفر (50/0درصد) و آهن (88/33 میلی‌گرم در کیلوگرم) در دانه و بیش‌ترین غلظت پتاسیم (93/0 و 54/0 درصد) و منگنز (11/43 و 63/23 میلی‌گرم در کیلوگرم) در به ترتیب در دانه و ریشه، هم‌چنین بیش‌ترین غلظت روی در ریشه (70/19 میلی‌گرم در کیلوگرم) از تیمار تلقیح توام بذور رقم دنا با آزوسپیریلوم و قارچ گلوموس موسه به‌دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Changes in Nutrient Content of Root and Grain of Wheat Cultivars Inoculated by Azospirillum and Mycorrhiza

نویسندگان [English]

  • M. Jiriaie 1
  • E. Fateh 2
  • A. Aynehband 2
  • E. Sepehr 3

1 Branch Arak, Islamic Azad University

2 Sahid Chamran University of Ahvaz

3 Urmia University

چکیده [English]

Introduction: Providing the nutritional requirements of agricultural crops by non-chemical resources is a new approach in the organic farming that has attracted the attention of both the researchers and the consumers in recent years. Therefore, it is highly important to find new fertilizer resources that are both economically able to provide the nutritional needs of the crop plants and have no adverse effects on the consumers and the environment.
Materials and Methods: With this approach, an experiment was conducted in the research station of Shahid Chamran University of Ahvaz, Iran in 2012-13. The experimental design was factorial based on randomized complete blocks design with three replications. The treatments including Mycorrhizal fungi in three levels (i.e. no use of strain; use of Glomus intraradices strain; and use of Glomus mosseae strain), bacteria Azospirillum lipoferum in two-levels (i.e. non-inoculated and inoculated) and wheat cultivars in three levels (i.e. Chamran; Dena; and Behrang). The measured parameters include the concentration of macronutrients (i.e. nitrogen, phosphorus and potassium) and some micronutrients (i.e. zinc, iron and manganese) in two part seed and the root of wheat.
Results and Discussion: Surveying the elements content in the root and the grain indicated a significant and positive effect of the use the Azospirillum and Mycorrhiza to improve the concentration of the elements in wheat cultivars. However, the simultaneous use of these microorganisms led to an increase of the effects of their application on their assessed traits.Finally the highest concentration of N (2.21 present), P (0.50 present) and Fe (33.88 mg.kg-1) were observed in the grain; the highest concentration of K (0.93 present and 0.54 present) and Mn (43.11 and 23.63 mg.kg-1) were observed in the grain and root, respectively. Moreover, the highest concentration of Zn in the root (19.70 mg.kg-1) was obtained from inoculation of C.V Dena seeds with Azospirillum and the use of G. mosseae. Also, in the general case of Mycorrhiza fungi use (between 6 to 20 present) and seed inoculation with Azospirillum lipoferum (between 8 to 25 present), the improved nutrient content in the seeds as well as greatest impact of Mycorrhiza use is in increasing the content of the grain Zn (20 present) and the lowest effect of Mycorrhiza using is in increasing the nitrogen content in seed (6 percent). Considering the elements content in the grain, the use of bacteria also showed that the greatest impact on increasing the use of bacteria Azospirillum lipoferum is in increasing the iron content in seeds (25 present) and the least impact of the use of Azospirillum lipoferum is in increasing the seed’s manganese (8 present). Moreover, the use of Mycorrhiza fungi (between 7 and 23 present) and seed inoculation with Azospirillum lipoferum (4 to 16 present) improved the contents of nutrients in wheat roots compared with the control group. Here, too, the greatest impact for Mycorrhiza application was in increasing the content of the Zn in the root (23 present) and the lowest effect of Mycorrhiza application was in increasing the potassium content in the root (7 percent). Moreover, considering the elements content in the roots in the case of being treated with Azospirillum lipoferum, the results showed that upon increasing the use of bacteria, the greatest impact of Azospirillum lipoferum in increasing elements content in the roots was an increased iron content in the root (16 present) and the minimum effect of the bactericidal application was in increasing the potassium root (4 present). Comparing the two species of Mycorrhizal fungi that have been used in the experiment, although application Glomus intraradices showed satisfactory results, the use of the species Glomus mosseae to increase the content of the element in seeds and roots has had a greater role. Moreover, the combined effects of these microorganisms have not only had an antagonistic effect of reducing the amount of content, they have also been more effective than being applied separately (between 7 and 12 present).
Conclusion: Generally associated with most of the measured elements, the treatment of seed inoculation with Azospirillum lipoferum and usage of Glomus mosseae in Dena cultivar that was a durum wheat, showed the highest concentration of the mentioned elements in the roots and seeds. Probably this has been due to the smaller grains in Dena than the other cultivars, which led to an increase in the ratio of the elements in the grain. Therefore, it seems that the use of the biofertilizers can be the perfect solution to eliminate the nutritional requirements of wheat. Moreover, it has the very important effect of the enrichment of this crucial product in the people’s dietary patterns in this country with the required elements.

Keywords: Azospirillum, Nutrition, Wheat, Root, Elements concentration, Mycorrhiza

کلیدواژه‌ها [English]

  • Azospirillum
  • Nutrition
  • wheat
  • Root
  • Elements concentration
  • Mycorrhiza
1- Akbari M., Zare M.J., Mehrabi A., and Nasrollah Negad A.A. 2013. Investigation of the effect of phosphorus fertilizer and spraying Fe chellat in micronutrients absorption rate, rate of proline and Soluble carbohydrates in bread wheat and some of its ancestral species in dryland condition. Electronic Journal of Crop Production, 6 (1): 1-17.
2- Amirabadi M., Ardakani M.R., Rejaji F., and Borji M. 2009. Effects of Azotobacter chroococcum and mycorrhizal fungus at different levels of phosphorus on qualitative and morphological characteristics of forage maize (K S C 704). Iranian Journal of Soil Research (Formerly soil and water science), 23(1): 107- 115. (in Persian with English Summary)
3- Amirabadi M., Seifi M, Rejaji F., and Ardakani, M.R. 2012. Study the Concentration of Microelements in Forage maize (Zea mays L.) (SC 704) as Effected By Inoculation With mycorrhizal And Azotobacter Chroococcum Under Different levels of Nitrogen. Journal of Agroecology, 4(1): 33- 40.
4- Amooaghaie R., Mostajeran A., and Emtiazi G. 2003. The effect of azospirillum strains bacteria concentration on the growth of wheat roots. Journal of Agricultural Science, 33 (2): 222-213. (in Persian).
5- Ardakani, M.R. and Mazaheri, D. 2011. Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application. Physiology and Molecular Biology of Plants, 17(2): 181-192.
6- Ardakani M.R., Mazaheri D., Shirani Rad A.H., and Mafakheri S. 2011. Uptake of Micronutrients by Wheat (Triticum aestivum L.) in a Sustainable Agroecosystem. Middle-East Journal of Scientific Research, 7 (4): 444-451
7- Behl R.K., Ruppel S., Kothe E., and Narula N. 2007. Wheat x Azotobacter x VA Mycorrhiza interactions towards plant nutrition and growth. Journal of Applied Botany and Food Quality, 81. 95 -109.
8- Cardoso I.M., and Kuyper T.W. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 116:72-84.
9- Chapman H.D., and Pratt D.F. 1961. Methods of analysis of Soil, Plant, and Water. University of California, Division of Agricultural Sciwnce, PP. 60-68.
10- Creus C., Sueldo R., and Barassi C. 2004.Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82: 273–281.
11- Ebrahim M.K., and Ali M.M. 2004. Physiological response of wheat to foliar application of zinc and inoculation with some bacterial fertilizers. Journal of Plant Nutrition, 27 (10): 1859-1874.
12- Eftekhari S.A., Ardakani M.R., Rejali F., Paknejad F., and Hasanabadi T. 2012. Phosphorus absorption in barley (Hordeum vulgare L.) under different phosphorus application rates and co-inoculation of Pseudomonas fluorescence and Azospirillum lipoferum. Annals of Biological Research, 3 (6): 2694-2702.
13- Hamel C. 2004. Impact of arbuscular mycorrhizal Fungi on N and P sycling in the root zone. Canadain. Journal Soil Science, 84 (4): 383-395.
14- Hamzehpour N., Malakouti M.J., And Majidi A. 2010. Zinc, Iron and manganese interaction in various organs of wheat. Iranian Journal of Soil Research (Formerly soil and water science), 24(1):1-8.
15- Lindsy W.L., and Norvel W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Am. J., 42:421-428.
16- Mardukhi B., Rejali F., Daei G., Ardakani M.R., Malakouti M.J. and Miransari M. 2011. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C. R. Biol., 334(7):564-71.
17- Mostajeran A., Amooaghaie B., and Emtiazi G. 2005. The effect Azospirillum and pH irrigation water on yield and protein content of wheat cultivars. Journal of Biology, 18: (3). 248-260. (in Persian).
18- Naiman A.D. Latro´nico, A. Garcı´a de Salamone I.E. 2009. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizosphere microflora. European Journal of Soil Biology, 45: 44 – 51.
19- Nelson D.W., and Sommers L.E. 1972. Determination of total nitrogen in plant material. Agronomy Journal, 65: 109-111.
20- Ortas I., 2010. Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal of Agricultural Research, 8(1): 116-122.
21- Rejali F., Alizadeh A., Salehrastin N., Malakouti M.J., Khavazi K., and Asgharzadeh A. 2006. In vitro preparation and reproduction of inoculant of Glomus intraradices. Iranian Journal of Soil Research (Formerly soil and water science), 20(2): 273-283.
22- Safapour M., Ardakani M.R., Khaghani S., Teymoori M., and Hezaveh H. 2012. The Influence of Mycorrhizal Fungi and Rhizobium Bacteria on Nutrient Uptake and Phytohormonal Fluctuations of Three Red Been (Phaseolus vulgaris L.) Genotypes. Archives Des Sciences Journal, 5 (65): 465-473.
23- Sajedi N.A., and Rejali F. 2011. Effect of drought stress on mycorrhizal inoculation on the uptake of micronutrients in maize. Journal of Soil Research, 25: (2). 83-92. (in Persian).
24- SAS 9.01.3 Copyright (c) 2004. By SAS Institute Inc., cary, nc, USA. SAS (r) Proprietary Software Version 9.00 (TS M0).
25- Schreiner P.R. 2007. Effects of native and non-native arbuscular mycorrhizal fungi on growth and nutrient uptake of piontnoir (Vitis vinifera L) in two soils with contrasting levels of phosphorus. Applied Soil Ecology,36: 205-215.
26- Sighn and Purhit, S. 2008. Biofertilizer Technology. Published by AGROBIOS (INDIA). First Edition. 389. p.
27- Solaiman A.R.M., Rabbani M.G., and Moll M.N. 2005. Effects of inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on growth and yield in chickpea. Korean Journal of Crop Science, 50: 256-261.
28- Violante A., Huang P.M., Bollag J.M., and Gianfreda L. 2002. Soil mineral-organic matter-microorganism interactions and ecosystem health: Ecological significance of the interactions among clay minerals, organic matter and soil biota. Elsevier, Netherlands. First Edition, 434. p.
29- Yang J., Kloepper J.W., and Ryu C.M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1): 1-4.
CAPTCHA Image