دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 فردوسی

چکیده

مطالعه و بررسی روند تغییرات بلند مدت پارامترهای هواشناسی، یکی از روش‌های متداول در مطالعات جوی به ویژه مبحث تغییر اقلیم است. در میان پارامترهای هواشناسی، دما همواره به عنوان یکی از مهم‌ترین عناصر جوی مطرح است و مطالعه آن در جهت درک بهتر پدیده تغییر اقلیم، مفید و موثر بوده است. علاوه بر شناسایی روند تغییرات، استخراج الگوهای نوسانی موجود در رخداد پدیده‌ها و پارامترهای جوی، می‌تواند روشی مطمئن و کاربردی برای کشف ارتباطات پیچیده چرخه جو-اقیانوس و پیامدهای کوتاه مدت و بلند مدت آن باشد. در این مقاله، با استفاده از تبدیل موجک گسسته و انجام آزمون من-کندال، داده‌های دمای متوسط در ایستگاه سینوپتیک مشهد در دوره 55 ساله (1956 تا 2010) مورد تحلیل و بررسی قرار گرفته است. نتایج نشان می‌دهد که روند تغییرات دما در همه مقیاس‌های زمانی مطالعه شده (ماهانه، فصلی، سالانه و فصول به صورت مجزا) مثبت و معنی‌دار است. فرکانس‌های غالب در مقیاس‌های ماهانه، فصلی و سالانه، تائید کننده رفتار نوسانی یکدیگرند، اما در خصوص فصول به نظر می‌رسد که الگوی نوسانی فصل‌های دارای محدوده دمایی مشابه، شباهت بیش‌تری به یکدیگر دارند. از طرفی دیگر، با توجه به شباهت بیش‌تر میان نتایج آزمون
من-کندال در فصول گرم و داده‌های با پایه زمانی ماهانه، فصلی و سالانه، به نظر می‌رسد دوره گرم سال تاثیر بیش‌تری بر روند مثبت و معنی‌دار دما در منطقه مطالعاتی دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Using Discrete Wavelet Transform for Trend Analysis and Oscillatory Patterns Identification of Temperature (Case Study: Mashhad Synoptic Station)

نویسندگان [English]

  • A.R. Araghi 1
  • M. Mousavi Baygi 1
  • majid hashemi nia 2

1 Ferdowsi University of Mashhad

2

چکیده [English]

Introduction: Studying long-term trend changes of meteorological parameters is one of the routine methods in atmospheric studies, especially in the climate change subject. Among the meteorological parameters, temperature is always considered as one of the most atmospheric elements and studying it in order to gain a better understanding of the climate change phenomenon, has been effective. In addition to identifying trends, extraction of oscillatory patterns in the atmospheric phenomena and parameters occurrence can be an applicable and reliable method to explore the complex relations between atmospheric-oceanic cycles and short term or long term consequences of meteorological parameters.
Materials and Methods: In this paper, monthly average temperature time series in Mashhad synoptic station in 55 years period (from 1956 to 2010) in monthly, seasonal, annual and seasons separately (winter, spring, summer and autumn) have been analyzed. Discrete wavelet transform and Mann-Kendall trend test were the main methods for performing this research. Wavelet transform is a powerful method in signal processing and it is an advanced version of short time Fourier transforms. Moreover, it has many improvements and more capabilities compared with Fourier transform. In the first step, temperature time series in various time scales (which was mentioned above) have been decomposed via discrete wavelet transforms into approximation (A) and detail (D) components. For the second step, Mann-Kendall trend test was applied to the various combinations of these decomposed components. For detecting the most dominant periodic component for each of the time scales datasets, results of Mann-Kendall test for the original time series and the decomposed components were compared to each other. The nearest value indicated the most dominant periodicity based on the D component’s level. To detect the similarity between results of the Mann-Kendall test, relative error method was employed. Additionally, it must be noted that before applying Mann-Kendall test, time series has to be assessed for its autocorrelation status. If there are seasonality patterns in the studied time series or lag-1 autocorrelation coefficient of data is significant, then some modified versions of the Mann-Kendall test have to be employed.
Results and Discussion: Results of this study showed that the temperature trend at every time scaled dataset (monthly, seasonal, annual and seasons separately) is positive and significant. Autocorrelation coefficients indicated that only seasonal time series and winter datasets did not have significant ACFs. On the other hand, monthly and seasonal datasets had seasonality pattern. Based on these results, Hirsch and Slack’s modified version of Mann-Kendall test was employed for monthly and seasonal time series and for the winter temperature data, the original version of the Mann-Kendall test was applied. For the remaining time series, the Hamed and Rao’s modified version of the Mann-Kendall trend test was employed. Dominant periodicities in monthly, seasonal and annual, confirmed the oscillatory behavior of each other. However, in the seasons, it seems that periodic patterns with the same temperature ranges are more similar. On the other hand, due to the greater similarity between the results of the Mann-Kendall test in the warmer seasons and the data with monthly, seasonal and annual time scale, it seems that yearly warm period has more noticeable impacts on the positive and significant trend of temperature in the study area. It must be noted that in any of the studied time series, results of the Mann-Kendall test for detail (D) component was not significant and after adding approximation (A) component, Mann-Kendall statistics turned to a significant value. This happens because the long term variations or trends appear in approximation components in most of the time series.
Conclusion: In this study, a powerful signal processing method called wavelet transform was employed to detect the most dominant periodic components in temperature time series in various time scales, in Mashhad synoptic station. Results showed that using frequency-time analysis methods has more benefits compared with the use of only classic statistical methods, since one can explore any time series with more accuracy. Because most of the meteorological variables have periodic structures, it seems that using advanced signal processing methods like wavelet for analysis of these variables can have many advantages compared with linear-based methods. It can be suggested for future studies to use and employ signal processing methods for exploring the large scaled phenomena (e.g. ENSO, NAO, etc.) and discovering the relationship between these phenomena and climate change in recent decades.

Keywords: Discrete wavelet transforms, Mann-Kendall test, Oscillatory pattern, Trend

کلیدواژه‌ها [English]

  • Discrete wavelet transforms
  • Mann-Kendall test
  • Oscillatory pattern
  • Trend
1- Ahrens C.D. 2011. Meteorology Today. Cengage Learning, USA.
2- Alizadeh A. 2010. Climate and Agricultural Meteorology. Imam Reza University Publication, Mashhad. (in Persian)
3- Alizadeh A., Kamali Gh., Mousavi F., and Mousavi Baygi M. 2008. Weather and Climate. Ferdowsi University of Mashhad Publication, Mashhad. (in Persian)
4- Dinar A., and Mendelsohn R. 2011. Handbook on Climate Change and Agriculture. Edward Elgar Publication, UK.
5- Dinpashoh Y., Jhajharia D., Fakheri-Fard A., Singh V.P, and Kahya E. 2011. Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399: 422-433.
6- Dinpashoh Y., Mirabbasi R., Jhajharia D., Zare Abianeh H., and Mostafaeipour A. 2014. Effect of short-term and long-term persistence on identification of temporal trends. Journal of Hydrologic Engineering, 19: 617-625.
7- El Kenawy A., Moreno J.I.L. and Serrano S.M.V. 2011. Trend and variability of surface air temperature in northeastern Spain (1920–2006). Atmospheric Research, 106: 159-180.
8- Esmaeilpour S. and Dinpashoh Y. 2012. Long term trend analysis of potential evapotranspiration in south basin of Aras river. Geography and Environmental Planning, (48)3:193-210. (in Persian)
9- Hamed K. and Rao A. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204: 182-196.
10- Hasheminia S.M. 2006. Water Management in Agriculture. Ferdowsi University of Mashhad Publication, Mashhad. (in Persian)
11- Hirsch R. and Slack J. 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20 (6): 727-732.
12- Kavyani M. and Alijani B. 2011. The Foundations of Climatology. Samt Publication, Tehran. (in Persian)
13- Martinez C.J., Maleski J.J. and Miller M.F. 2012. Trends in precipitation and temperature in Florida, USA. Journal of Hydrology, 452-453: 259-281.
14- Mirabbasi Najafabadi R., and Dinpashoh Y. 2010. Trend Analysis of Streamflow Across the North West of Iran in Recent Three Decades. Journal of Water and Soil, (24)4:757-768. (in Persian with English abstract)
15- Misiti M., Misiti Y., Oppenheim G. and Poggi J. M. 2013. Matlab Wavelet Toolbox User’s Guide. MathWorks, USA.
16- Mullon L., Chang N., Yang Y. and Weiss J. 2013. Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America. Journal of Hydrology, 499: 247-264.
17- Nalley D., Adamowski J., Khalil B. and Ozga-Zielinski B. 2013. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmospheric Research, 132-133, 375-398.
18- Niroumand H. 2007. Applied Nonparametric Statistical Methods. Ferdowsi University of Mashhad Publication, Mashhad. (in Persian)
19- Olkkonen H. 2011. Discrete Wavelet Transforms - Biomedical Applications. InTech, Croatia.
20- Özger M., Mishra A.K. and Singh V.P. 2010. Scaling characteristics of precipitation data in conjunction with wavelet analysis. Journal of Hydrology, 395: 279-288.
21- Partal T. and Kahya E. 2005. Trend analysis in Turkish precipitation data. Hydrological Processes, 20: 2011-2026.
22- Percival D. and Walden A. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, New York.
23- Rahimzadeh F. 2011. Statistical Methods in Meteorology and Climatology Researches. Seyed Bagher Hosseini Publication, Tehran. (in Persian)
24- Richardson K., Steffen W. and Liverman D. 2011. Climate Change: Global Risks, Challenges and Decisions. Cambridge University Press. New York.
25- Ruch D. K. and Van Fleet P.J. 2009. Wavelet Theory: an Elementary Approach with Applications. Wiley Publications, New Jersey.
26- Saboohi R., Soltani S. and Khodagholi M. 2012. Trend analysis of temperature parameters in Iran. Theoretical and Applied Climatology, 109: 529-547.
27- Sabziparvar A., Seyf Z., and Ghiami F. 2013. Trend analysis of temperature in some stations in arid and semi-arid regions of Iran. Geography and Development, 30: 117-138. (in Persian)
28- Smith R. T. and Minton R. B. 2012. Calculus. McGraw-Hill, New York.
29- Sonali P. and Kumar D. N. 2013. Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476: 212-227.
30- Tabari, H. and Hosseinzadeh Talaee P. 2011. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change, 79, 1-10.
31- Taghavi F., Neyestani A., Mohammadi H., and Jalilian Rostami Sh. 2011. Application of wavelet analysis to investigate precipitation variability at western regions of Iran. Journal of Iran Geophysics, (5)4:13-30. (in Persian with English abstract)
32- Toufani P., Mosaedi A., and Fakheri Fard A. 2011. Prediction of Precipitation Applying Wavelet Network Model (Case study: Zarringol station, Golestan province, Iran). Journal of Water and Soil, (25)5:1217-1226. (in Persian with English abstract)
33- Watts R. G. 2013. Engineering Response to Climate Change. CRC Press, USA.
34- Wilks D. S. 2011. Statistical methods in the atmospheric sciences. Academic Press, USA.
CAPTCHA Image