نوع مقاله : مقالات پژوهشی
نویسندگان
1 گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
اطلاع از مقاومت فروروی (PR) خاک از نظر جوانهزنی بذر، رشد ریشه و عملیات خاکورزی اهمیت فراوان دارد. اندازهگیری مستقیمPR خاک بهدلیل تغییرپذیری مکانی و زمانی شدید آن، کاری پرزحمت و گران میباشد. هدف از این پژوهش، ارایه مدلهای رگرسیون خطی (MLR)، شبکه عصبی مصنوعی (ANN) و برنامهریزی بیان ژن (GEP) برای برآورد PR از روی ویژگیهای زودیافت خاک بود. در مجموع 80 نمونه خاک سطحی (0 تا cm 10) دستخورده و دستنخورده (با استفاده از استوانههای استیل به قطر و ارتفاع 5 سانتیمتر) از اراضی جنگلی، مرتعی و زراعی منطقه فندقلوی اردبیل در تابستان 1402 برداشته شد سپس برخی خصوصیات فیزیکی و شیمیایی زودیافت خاک در آنها اندازهگیری شد. مقاومت فروروی خاک بهطور درجا در محل با استفاده از یک فروسنج مخروطی تعیین گردید و همزمان رطوبت خاک مزرعه در استوانهها اندازهگیری شد. دادهها بهطور تصادفی به دو گروه آموزشی (60 نمونه) و آزمونی (20 نمونه) تقسیم گردید. مدلهای MLR، ANN و GEP بهترتیب با استفاده از نرمافزارهای SPSS، MATLAB و Gene Xpro Tools ایجاد شدند. نتایج مدلسازی نشان داد که رطوبت خاک مزرعه، سیلت و جرم مخصوص ظاهری نسبی، مهمترین متغیرهای ورودی در برآورد PR خاک بودند. مقادیر آمارههای ضریب تبیین (R2)، مجذور میانگین مربعات خطا (RMSE)، میانگین خطا (ME) و ضریب نش-ساتکلیف (NS) براساس دادههای آزمونی برابر 44/0، MPa 19/1، MPa 19/0 و 36/0، 92/0، MPa 41/0، MPa 05/0- و 92/0، 79/0، MPa 91/0، MPa 13/0 و 63/0 بهترتیب برای بهترین مدل MLR، ANN و GEP تعیین گردید. براساس نتایج آمارههای ارزیابی مدلها، میتوان گفت که در منطقه مورد مطالعه، مدل ANN از بیشترین دقت و مدل MLR از کمترین دقت در برآورد PR خاک برخوردار بود.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Modeling Soil Penetration Resistance Using Regression, Artificial Neural Network and Gene Expression Programming
نویسندگان [English]
- Sh. Asghari 1
- M. Hasanpour Kashani 2
- H. Shahab Arkhazloo 1
1 Department of Soil Sciences and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Water Engineering Department, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]
Introduction
The penetration resistance (PR) of the soil shows the mechanical resistance of the soil against the penetration of a conical or flat probe; it is important in terms of seed germination, root growth and tillage operations. In general, if the PR value of a soil exceeds 2.5 MPa, the growth and expansion of roots in the soil will be significantly limited. The direct measurement of PR is also a laborious and costly task due to instrumental errors. Therefore, it is useful the use of different models such as multiple linear regression (MLR), artificial neural network (ANN) and gene expression programming (GEP) to estimate PR through easily accessible and low-cost soil characteristics. The objectives of this research were: (1) to obtain MLR, ANN and GEP models for estimating PR from the easily accessible soil variables in forest, range and cultivated lands of Fandoghloo region of Ardabil province, (2) to compare the accuracy of the aforementioned models in estimating soil PR using the coefficient of determination (R2), root mean square error (RMSE), mean error (ME) and Nash-Sutcliffe coefficient (NS) criteria.
Materials and Methods
Disturbed and undisturbed samples (n = 80) were nearly systematically taken from 0-10 cm soil depth with nearly 50 m distance in forest (n = 20), range (n = 23) and cultivated (n = 37) lands of Fandoghloo region of Ardabil province, Iran (lat. 38° 24' 10" to 38° 24' 25" N, long. 48° 32' 45" to 48° 33' 5" E) in summer 2023. The contents of sand, silt, clay, CaCO3, pH, EC, bulk (BD) and particle density (PD), organic carbon (OC), gravimetric field water content (FWC), mean weight diameter (MWD) and geometric mean diameter (GMD) were measured in the laboratory. Relative bulk density (BDrel) was calculated using BD and clay data. Mean geometric diameter (dg) and geometric standard deviation (σg) of soil particles were computed by sand, silt and clay percentages. The penetration resistance (PR) of the soil was measured in situ using cone penetrometer (analog model) at 5 replicates. Data randomly were divided in two series as 60 data for training and 20 data for testing of models. The SPSS 22 software with stepwise method, MATLAB and Gene Xpro Tools 4.0 software were used to derive multiple linear regression (MLR), artificial neural network (ANN) and gene expression programming (GEP) models, respectively. A feed forward three-layer (2, 5 and 6 neurons in hidden layer) perceptron network and the tangent sigmoid transfer function were used for the ANN modeling. A set of optimal parameters were chosen before developing a best GEP model. The number of chromosomes and genes, head size and linking function were selected by the trial and error method, as they are 30, 3, 8, and +, respectively. The rates of genetic operators were chosen according to literature studies. The accuracy of MLR, ANN and GEP models in estimating PR were evaluated by coefficient of determination (R2), root mean square error (RMSE), mean error (ME) and Nash-Sutcliffe coefficient (NS) statistics.
Results and Discussion
The studied soils had clay loam (n = 11), sandy clay loam (n = 6), sandy loam (n = 12), loam (n = 13), silty clay loam (n = 14), silty clay (n = 1) and silt loam (n = 23) textural classes. The values of sand (13.14 to 64.79 %), silt (21.11 to 74.96 %), clay (2.95 to 42.18 %), OC (1.01 to 7.17 %), FWC (11.58 to 50.47 mass percent), BD (0.84 to 1.43 g cm-3) and PR (1.03 to 5.83 MPa) showed good variations in the soils of the studied region. There were found significant correlations between PR with FWC (r = - 0.45**), silt (r = - 0.36**) and σg (r = 0.36**). Due to the multicollinearity of silt with σg (r = -0.84**), the σg was not used as an input variable to estimate PR. Generally, 3 MLR, ANN and GEP models were constructed to estimate PR from measured readily available soil variables. The results of MLR, ANN and GEP models showed that the most suitable variables to estimate PR were FWC, silt and BDrel. The values of R2, RMSE, ME and NS criteria were obtained equal 0.44, 1.19 MPa, 0.19 MPa and 0.36, and 0.92, 0.41 MPa, -0.05 MPa and 0.92, 0.79, 0.91 MPa, 0.13 MPa, 0.63 for the best MLR, ANN and GEP models, respectively. The former researchers also reported that there is a negative and significant correlation between PR with FWC.
Conclusion
The results indicated that field water content (FWC), silt and relative bulk density (BDrel) were the most important and readily available soil variables to estimate penetration resistance (PR) in the studied area. According to the lowest values of RMSE and the highest values of NS, the accuracy of ANN models to predict soil PR was higher than MLR and GEP models in this research.
کلیدواژهها [English]
- Estimation
- Fandoghloo region
- Gravitational water content
- Readily variables
- Soil resistance
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source. |
ارسال نظر در مورد این مقاله