دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسنده

موسسه تحقیقات کشاورزی دیم کشور

چکیده

تنش رطوبتی حاصل از کمبود بارندگی (تنش خشکی) و گرما (تنش گرمایی) از عمده‌ترین تنش‌های محیطی می‌باشد که بر تولید محصولات زراعی در مناطق خشک و نیمه خشک اثر منفی می‌گذارد. مطالعه به‌منظور تعیین آستانه تنش رطوبتی با استفاده از پارامترهای تنش گرمایی مرتبط با وضعیت آبی گیاه و شناسایی و معرفی لاین‌های مقاوم به این تنش‌ها انجام گرفت. آزمایش به‌صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار و در شرایط تنش آبی (دیم) و بدون تنش آبی (50 میلی‌متر آبیاری تکمیلی در زمان کاشت و 30 میلی­متر در مرحله آبستن) در کرت اصلی و 15 ژنوتیپ جو در کرت‌ فرعی در دو سال زراعی (95-1394 و 97-1396) در ایستگاه تحقیقات کشاورزی دیم (مراغه) به اجرا در ‌آمد. صفات گیاهی، عملکرد، اجزای عملکرد، دمای پوشش سبز (Tc) در 6 مرحله از ظهور برگ پرچم (ZGS55) الی خمیری نرم (ZGS85) و NDVI در 7 مرحله از ظهور اولین گره (ZGS31) الی خمیری نرم (ZGS85) اندازه­گیری شد. با استفاده از شاخص CWSI، آستانه تنش رطوبتی برای ژنوتیپ­های جو 75/0 و آستانه دمای بحرانی 2/24 درجه سانتی­گراد معادل با 3/7 میلی­متر بر روز تبخیر-تعرق پتانسیل (ET0) و 99/4 کیلوپاسکال کمبود فشار بخار هوا (VPD) تعیین شد. حداکثر تنش رطوبتی قابل تحمل (CWSI) به عنوان مبنای توقف کامل تعرق و فتوسنتز در گیاه جو، Tc و تبخیر-تعرق پتانسیل (ET0) به ترتیب 04/1، 7/32 درجه سانتی­گراد و 01/11 میلی­متر بر روز به‌دست آمد. شروع مرحله بحرانی از 20 خرداد (261 روز از اول مهر ماه) معادل با شروع گلدهی (ZGS60) بود. در نهایت ژنوتیپ­های انصار،ChiCm/An57//Albert ، Sahand/C-25041 و Ste/Antares//YEA762 مقاوم به تنش و مناسب برای شرایط دیم و ژنوتیپ‌های آبیدر، Sahand/C-25041، قره­آرپا، ChiCm/An57//Albert و ماکویی برای شرایط آبیاری تکمیلی توصیه می­شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Water Status and Its Critical Stages in Dryland Barley Genotypes (Hordeum vulgare) Using Crop Water Stress Index (CWSI)

نویسنده [English]

  • V. Feiziasl

Dryland Agricultural Research Institute (DARI), Agricultural Research Education and Extension Organization (AREEO), Maragheh, Iran

چکیده [English]

Introduction
 Barley could be grown under low-input and harsh conditions because of its wide adaptability to drought, and heat stresses. Nonetheless, the water stress leads to yield reduction when drought stress occurs during stem elongation and grain filling stages. In rainfed areas, water and heat stress occur together, specifically after anthesis, amplifying the adverse effects of water stress via disrupting water uptake of crops. In this regard, measurement of canopy temperature (Tc) by infrared thermometry is a non-destructive method that can effectively characterize the water status of plants. There is a linear relation between Tc and transpiration, which increases upon stomata closure. Since stomata is very sensitive to environmental variations and moisture reduction in the plant and it is very difficult to measure, therefore, Tc is the preferred factor to determine the crop water status. The Tc was used to calculate the practical Crop Water Stress Index (CWSI) by Idso et al. (1981) and Jackson et al. (1981). Dold et al., (2017) reported a positive significant correlation between CWSI and transpiration, daily soil water content, and plant production. Negative significant correlations between CWSI and pure photosynthesis rate, transpiration, and stomatal conductance were also reported. This study was aimed to: (i) assess the water stress effects on dryland barley genotypes using Tc, (ii) identify the upper limit for Tc affecting performance and reducing barley grain yield, (iii) determine the critical point of water stress, and (iv) apply CWSI to select the most suitable barley genotypes for both rainfed and supplemental irrigation conditions.
Materials and Methods
 To determine the crop water stress index (CWSI) and assess water status of dryland barley genotypes, an experiment was carried out in a split plot arrangement based on randomized complete block design with 15 genotypes in three replications at the Dryland Agricultural Research Institute, Maragheh (46° 45ʹ E, and 37° 26ʹ N), Iran in the 2015-2018 cropping seasons. The main plots included rainfed (as stress conditions), and supplemental irrigation (two times: 50 mm irrigation in the sowing time and 30 mm irrigation in the booting stage) as non-water stress conditions. The sub-plots included 15 barley genotypes (GaraArpa, 71411, Abidar, Ansar, ARM-ICB, ChiCm/An57//Albert, Dobrynya, Kuban-06, Makooei, Redical, Sahand, Sahand/C-25041, Sararood1, Ste/Antares//YEA762 and Valfajr). The barley genotypes were planted by Wintersteiger planter in six-row plots with 8 m long and 1.20 m wide (20 cm row spacing). The sowing rate was 380 seeds per m2 based on the thousand kernel weight (TKW) of each genotype. Seeds were treated by Penconazole fungicide. The planting dates were October 4, 2015, and October 7, 2017. In each plot, two canopy temperatures (Tc) were measured using infrared thermometer Model A-1 in six crop reproductive stages from the half of ear emerged above flag leaf ligule stage (GS55) to the soft dough stage (GS85). Measuring time was between 1:00 to 2:00 pm.
Results and Discussion
 The results indicated that the upper baseline for non–transpiring of dryland barley genotypes (Tc-Ta = 0.0008VPD + 5.89; VPD: vapor pressure deficit) was 5.9 °C (ranged from 5.5 to 6.9) which is equal to 32.4 °C green canopy and 9.0 to 11.1 mm/day evapotranspiration. Non-stressed baseline or lower baseline (Tc-Ta = -2.4662VPD + 9.15; R2 = 0.97**) showed that CWSI threshold value was 0.75 which is equal to 24.3 °C (23.7 to 26.1 °C) Tc under supplemental irrigation and 23.3 to 24.7 °C under water stress conditions. Additionally, CWSI threshold was equal to 7.3 mm/day evapotranspiration and 5.02 kPa VPD. On the other hand, results revealed that when Tc exceeded 25 °C, biological yield, thousand kernel weight (TKW) decreased significantly, followed by grain yield in different barley genotypes. The slope of the CWSI calibration equation (Tc-Ta = -2.4662VPD + 9.15) is often more negative in hot and dry areas, and tends to zero in cold and humid areas. Therefore, its negativity indicates the conditions of moisture stress for barley genotypes in the dryland phase. The CWSI threshold for barley genotypes growth stages happened at 248 (6th June) days from sowing time (4th – 7th October) which is equal to flowering stage (ZGS60). According to CWSI quantity, Ansar, ChiCm/An57//Albert, Sahand/C-25041and Ste/Antares//YEA762 were grouped in the tolerance class under stress (dryland) conditions. However, Abidar, Sahand/C-25041, GaraArpa, ChiCm/An57//Albert and Makooei were placed in the tolerance class under non-stress (supplemental irrigation) conditions.
Conclusion
The CWSI could estimate the intensity of heat and water stresses in the grain filling stage for barley genotypes in cold and semi-arid areas. The average of canopy temperature threshold values were 24.8 and 24.0 °C for dryland barley genotypes in supplemental irrigation and dryland conditions, respectively. In addition, these indices could be used to estimate heat and water stress tolerance levels for barley genotypes.

کلیدواژه‌ها [English]

  • Dryland and supplemental irrigation
  • Canopy temperature
  • Water stress threshold
  1. Acevedo, Silva P., and Silva H. 2002. Wheat growth and physiology. p 53-89. In: B.C. Curtis, S. Rajaram, H. Gómez Macpherson (eds). Bread wheat Improvement and Production. Cereals Officer, Crop and Grassland Service, FAO.
  2. Ahmadi, Ebadzadeh H., Ebdeshah H., Kazemian A., and Rafiee M. 2019. Agricultural statistics of Iran cropping year 2016-2017. Agronomy Production; Ministry of Agriculture, Planning and Economic Deputy, Information Technology Center: Tehran, Iran. (In Persian)
  3. Ayeneh, Van Ginkel M., Reynolds M.P., and Ammar K. 2002. Comparison of leaf, spike, peduncle, and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173–184. https://doi.org/10.1016/S0378-4290(02)00138-7.
  4. Bucks, Nakavamma F., French O., Regard W., and Alexander W. 1985. Irrigated guayule evapotranspiration and plant water stress. Agricultural Water Management 10: 61-79. https://doi.org/10.1016/0378-3774(85)90035-6.
  5. Cao, and Moss DN. 1989. Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Science 29: 1018–1021. https://doi.org/10.2135/cropsci1989.0011183X002900040038x.
  6. Colaizzi, Oshaughnessy SA., Evett SR., and Howell TA. 2012. Using plant canopy temperature to improve irrigated crop management. Proceedings of the Central Plains Irrigation Conference. February 21-22, 2012, Colby, Kansas. p. 203-223.
  7. Daničić, Zekić V., Mirosavljević M., Lalić B., Putnik-Delić M., Maksimović I., and Dalla Marta A. 2019. The response of spring barley (Hordeum vulgareL.) to climate change in Northern Serbia. Atmosphere 10: 14. https://doi.org/10.3390/atmos10010014.
  8. Dias, Lidon FC., and Ramalho JC. 2009. Heat stress in Triticum: Kinetics of Fe and Mn accumulation. Brazilian Journal of Plant Physiology 21(2): 153–164. .
  9. Dold, Hatfield, JL., Prueger J., Sauer T., Büyükcangaz H., and Rondinelli, W., 2017. Long-term application of the crop water stress index in midwest agro-ecosystems. Agronomy Journal 109: 2172–2181. https://doi.org/10.2134/agronj2016.09.0494.
  10. Elbashier, Tahir ISA., Saad AI., and Ibrahim MAS. 2012. Wheat genotypic variability in utilizing nitrogen fertilizer for a cooler canopy under a heat-stressed irrigated environment. African Journal of Agricultural Research 7(3): 385-392. https://doi.org/10.5897/AJAR11.525.
  11. Erkan H., Celik S., Bilgi B., and Koksel H. 2006. A new approach for the utilization of barley in food products: Barley tarhana. Food Chemistry 97: 12-18. https://doi.org/10.1016/j.foodchem.2005.03.018.
  12. Fashaee, Sanaee Nejad S., and Davary, K. 2015. Soil moisture estimation using MODIS images (Case Study: Mashhad plain area). Water and Soil 29(6): 1735-1748. http://doi.org/10.22067/JSW.V29I6.34978.
  13. Feiziasl, Fotovat A., Astarae A., Lakzian A., Mousavi SB. 2014. Effect of optimized nitrogen application in reducing drought stress effect on grain yield of some rainfed bread wheat genotypes. Seed and Plant Production Journal 30(2): 169-198. http://doi.org/10.22092/sppj.2017.110544.
  14. Feiziasl , Jafarzadeh J., Pala M., and Mosavi SB. 2009. Determination of micronutrient critical Levels by plant response column order procedure for dryland wheat (T. aestivum L.) in Northwest of Iran. International Journal of Soil Science 4(1): 14-19. http://doi.org/10.3923/ijss.2009.14.26.
  15. Feiziasl 2017. Evaluation of dryland barley (Hordum vulgare) genotypes response to the nitrogen rates and application times. Water and Soil 31(2): 490-508. http://doi.org/10.22067/jsw.v31i2.53350.
  16. Feiziasl, Fotovat A., Astaraei A., Lakzian A., and Mousavi Shalmani MA. 2014. Determination of soil and plant water balance and its critical stages for rainfed wheat using Crop Water Stress Index (CWSI). Water and Soil 28(4): 804-817. http://doi.org/10.22067/jsw.v0i0.29119.
  17. Feiziasl, Jafarzadeh J., Sadeghzadeh B., and Mousavi Shalmani MA. 2022. Water deficit index to evaluate water stress status and drought tolerance of rainfed barley genotypes in cold semi-arid area of Iran. Agricultural Water Management 262: 107395. https://doi.org/10.1016/j.agwat.2021.107395.
  18. Fischbeck G. 2002. Contribution of barley to agriculture: a brief overview, In: G. A. Slafer, et al. (Eds.), Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality, Food Products Press, an imprint of The Haworth Press, Inc., pp. 1-14. pp. 1-14.
  19. Fitzgerald, Rodriguez D., Christensen .K., Belford R., Sadras VO., and Clarke TR. 2006. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric 7: 233–248. https://doi.org/10.1007/s11119-006-9011-z.
  20. Gardner, and Shock CC. 1989. Interpreting the crop water stress index. ASAE Paper No: 89-2642.
  21. Gol, Tomé F., and Korff MV. 2017. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. Journal of experimental botany 68(7): 1399-1410. https://doi.org/10.1093/jxb/erx055.
  22. Gomes 1985. Curso de estatística experimental. São Paulo: Nobel, 467p.
  23. Hakala, Jauhiainen L., Himanen SJ., Rötter R., Salo T., and Kahiluoto, H., 2012. Sensitivity of barley varieties to weather in Finland. Journal of Agricultural Science 150: 145–160. https://doi.org/10.1017/S0021859611000694.
  24. Hlaváčová, Klem K., Smutná P., Škarpa P., Hlavinka P., Novotná K., Rapantová B., and Trnka M. 2017. Effect of heat stress at anthesis on yield formation in winter wheat. Plant, Soil and Environment 63: 139-144. https://doi.org/10.17221/73/2017-PSE.
  25. Idso 1982. Nonwater stress baselines: A key to measuring and interpreting water stress. Agricultural Meteorology 27: 59-70. https://doi.org/10.1016/0002-1571(82)90020-6.
  26. Idso, Jackson RD., Pinter PJ., Reginato RJ., and Hatfield JL. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol 24: 45–55. https://doi.org/10.1016/0002-1571(81)90032-7.
  27. Irmak S., Istanbulluoglu E., and Irmak A. 2008. An Evaluation of Evapotranspiration model complexity against performance in comparison with Bowen Ration Energy Balance measurements. Transactions of the ASABE 51(4):1295-1310. http://org/10.13031/2013.25246.
  28. Jackson, Idso SB., Reginato RJ., and Pinter PJ., 1981. Canopy temperature as a crop water stress indicator. Water Resources Research 17: 1133–1138. https://doi.org/10.1029/WR017i004p01133.
  29. Klink, Crawford CJ., Wiersma JJ., and Stuthman D.D. 2011. Climate variability and the productivity of barley and oats in Minnesota. CURA Report 41: 12–18.
  30. Lawlor DW., and Cornic 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275-294. http://doi.org/10.1046/j.0016-8025.2001.00814.x.
  31. Liang 2004. Quantitative remote sensing of land surfaces. John Wilcy and Sons, Inc. http://doi.org/10.1002/047172372X.
  32. Mamnouie, Ghazvini RF., Esfahany M., and Nakhoda B. 2006. The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. Journal of Agricultural Science and Technology 8: 211-219.
  33. Mokhtari, Esfarjani F., and Kargar Fard M. 2014. The effect of combined aerobic exercise and barley β-glucan on lipid profile and glucose blood of women with diabet type two. Iranian Journal of Diabetes and Lipid Disorders (ijdld) 13(4) :340-351
  34. Moran, Clarke TR., Inoue Y., and Vidal A., 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environment 49: 246–263. https://doi.org/10.1016/0034-4257(94)90020-5.
  35. Pipatsitee, Eiumnoh A., Praseartkul P., Taota K., Kongpugdee S., Sakulleerungroj K., and Cha-um S. 2018. Application of infrared thermography to assess cassava physiology under water deficit condition. Plant Production Science 21(4): 398-406. https://doi.org/10.1080/1343943X.2018.1530943.
  36. Pradhan, Prasad PVV. 2015. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One 10: 1–20. http://doi.org/10.1371/journal.pone.0116620.
  37. Rizza, Badeck FW., Cattivelli L., Lidestri O., Di Fonzo N., and Stanca AM. 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science 44: 2127-2137. http://doi.org/10.2135/cropsci2004.2127.
  38. Roostaei, Feiziasl V., Eskandari I., and Jafarzadeh J. 2021. Technical guidelines for dryland wheat cultivation for Eastern Azarbaijan cold areas. Agricultural Jihad Organization of Eastern Azarbaijan. 25 p.
  39. Roy, and Ophori D. 2014. Estimation of crop water stress index in almond orchards using thermal aerial imagery. Journal of Spatial Hydrology 12.
  40. Tavakoli 2013. Effects of sowing date and limited irrigation on yield and yield components of five rainfed wheat varieties in Maragheh region. Journal of Crop Production and Processing (JCPP) 2(6): 87-97.
  41. Tavakoli AR. 2012. Single irrigation and sowing date for rainfed barley in Maragheh region and estimation of production functions. Journal of Agricultural Engineering Research 13(2): 39-56. http://org/10.22092/JAER.2012.100271.
  42. Tilling, Leary GJO., Ferwerda JG., Jones SD., Fitzgerald GJ., Rodriguez D., and Belford R. 2007. Remote sensing of nitrogen and water stress in wheat. Field Crops Reserch 104: 77-85. https://doi.org/10.1016/j.fcr.2007.03.023.
  43. Trnka, Rötter RP., Ruiz-Ramos M., Kersebaum KCh, Olesen JE., Žalud Z., and Semenov MA. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change 4: 637–643. https://doi.org/10.1038/nclimate2242.
  44. Tubaileh, Sammis TW., and Lugg D.G. 1986. Utilization of thermal infrared thermometry for detection of water stress in spring barley. Agric. Water Manage 42: 75–85. https://doi.org/10.1016/0378-3774(86)90007-7.
  45. Umesh, and Ferris H. 1994. Influence of temperature and host plant on the interaction between pratylenchus neglectus and meloidogyne chitwoodi. Journal of Nematology 26(1): 65-71. http://doi.org/10.1007/s10661-011-2206-4.
  46. Williams 1974. A critical evaluation of a biophotothermal time scale for barley. International Journalof Biometeorology 18: 259–271. https://doi.org/10.1007/BF01463714.

 

CAPTCHA Image