دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

3 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

کمبود روی از مشکلات خاک‌های آهکی است و برطرف کردن آن منجر به افزایش عملکرد محصولات کشاورزی می‌شود. کودهای شیمیایی روی با گذشت زمان غیر قابل استفاده شده و کودهای آلی می‌تواند با تأثیر بر توزیع روی در خاک‌ها باعث بهبود قابلیت استفاده آن شوند. اما نحوه تأثیر و برهمکنش آنها با کودهای شیمیایی نیازمند بررسی دقیق تغییر قابلیت استفاده و اجزاء روی در خاک‌های تیمارشده با کودهای آلی و شیمیایی است. هدف این تحقیق بررسی برهمکنش سولفات روی و ورمی‌کمپوست بر قابلیت استفاده و جزءبندی روی در طی زمان در یک خاک آهکی رسی بود. این تحقیق به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی شامل فاکتور اول ورمی‌کمپوست (دو سطح 0 و 1 درصد) و فاکتور دوم روی (سه سطح 0، 2 و 5 میلی‌گرم بر کیلوگرم از منبع سولفات روی) با 3 تکرار انجام شد. نمونه‌های خاک تیمارشده در دمای 1± 22 درجه سانتی‌گراد و رطوبت ظرفیت زراعی به‌مدت 120 روز در انکوباتور خوابانده شدند. در شروع آزمایش، 60 و 120 روز پس از خواباندن نمونه‌ای از هر تیمار برای تعیین قابلیت استفاده با روش DTPA-TEA و اندازه‌گیری اجزاء روی با روش BCR برداشته شد. نتایج نشان داد که در اثر کاربرد ورمی‌کمپوست میانگین روی عصاره‌گیری شده با DTPA-TEA به‌صورت معنی‌داری (05/0>P) افزایش یافت. برهمکنش ورمی‌کمپوست و زمان بر روی قابل استفاده معنی‌دار نبود (05/0P>). با گذشت زمان روی قابل استفاده در حضور سولفات روی کاهش یافت (05/0>P). علاوه بر آن، در اثر کاربرد ورمی‌کمپوست در خاک‌های تیمارشده با روی، اجزاء روی با گذشت زمان افزایش یافتند. به‌جز روی باقیمانده که با گذشت زمان کاهش یافت. بررسی ضرایب همبستگی نشان داد که رابطه معنی‌داری بین روی عصاره‌گیری شده با DTPA-TEA و اجزاء مختلف روی وجود داشت. نتایج این تحقیق نشان داد که در اثر کاربرد ورمی‌کمپوست اجزاء روی در خاک رسی تیمارشده با سولفات روی تغییر کرده و قابلیت استفاده آن افزایش یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Intraction Effect of Zinc Sulphate and Vermicompost on Availability and Fractions of Zinc in a Calcareous Soil

نویسندگان [English]

  • F. Mohammadi Navchinejad 1
  • A. R. Hosseinpur 2
  • H. R. Motaghian 3

1 M.Sc. Student of Soil Science and Engineering of Agriculture Faculty, Shahrekord University, Iran, respectively.

2 Professor of Soil Science and Engineering of Agriculture Faculty, Shahrekord University, Iran, respectively.

3 Assistant Professor of Soil Science and Engineering of Agriculture Faculty, Shahrekord University, Iran, respectively.

چکیده [English]

Introduction: Application of organic fertilizers such as vermicompost to agricultural calcareous soils with low organic matter content is a way to add nutrients to these soils. Different organic fertilizers have different effects on soil nutrient availability. Moreover, the study of nutrients distribution in the soil allows us to investigate their mobility and bioavailability. Zinc (Zn) deficiency is an important problem in many calcareous soils due to its effect on increasing the yield of agricultural products. Organic fertilizers can improve availability of Zn by impact on its fractionation. On the other hand, their interaction with chemical fertilizers requires careful consideration of availability and fractionation of Zn in soils treated with organic and chemical fertilizers. The aim of this research was to investigate the interaction effect of zinc sulphate, and vermicompost on availability and fractions of Zn in a calcareous clay soil.
Materials and Methods: This study was performed as a completely randomized factorial design including two levels of vermicompost (0 and 1% w/w) and three levels of Zn (0, 2, and 5 mg kg-1 as ZnSO4) with three replications. All treated soils were incubated for 120 days at 22 ± 1 0C and constant moisture (17% w/w). Zinc availability (DTPA-TEA) and other fractions (BCR method) were determined at the beginning of experiment, 60 days, and 120 days after incubation. The soil samples were sequentially extracted using an operationally defined sequential fractionation procedure, based on that employed by BCR in which increasingly strong extractants were used to release Zn associated with different soil fractions. Four Zn -fractions were extracted in the following sequence: Step 1: soluble, exchangeable, and associated with carbonates fraction (a 40 ml of 0.1 M CH3COOH for 16 h at room temperature), Step 2: iron-manganese oxides-associated fraction (40 ml of 1 M NH2OH.HCl in 1.5 M HNO3 for 16 h at 22 0C), Step 3: organic matter-associated fraction (50 ml of 1 M CH3COONH4 in 1.5M HNO3 for 16 h at 85 0C) and Finally step 4: residual fraction was determined using 4 M HNO3 (a 12.5 ml volume of 4 M HNO3, for 16 h at 80 0C). Concentrations of Zn in all extractants were determined by Atomic absorption spectroscopy..
Results and Discussion: The results of this study showed that the mean of Zn extracted by DTPA-TEA after vermicompost application increased significantly (P<0.05). The interaction between vermicompost and time on Zn extracted by DTPA-TEA was not significant (P>0.05). Zinc extracted by DTPA-TEA decreased with increasing incubation time. All forms of Zn increased by vermicompost application in soil samples treated with ZnSO4. Soluble, exchangeable, and bound to carbonates Zn and Zn associated to Fe-Mn oxides fractions (except vermicompost with 5 mg kg-1 Zn at 60 days after incubation) increased with increasing incubation time. Zinc associated to organic matter increased 60 days after incubation compared to the beginning of the experiment. However, difference between Zn associated to organic matter at 120 days after incubation and beginning of the experiment was not significant (except vermicompost with 5 mg kg-1 Zn at 60 days after incubation). The results of this study showed that residual Zn decreased with increasing incubation time. Results of this study demonstrated that the fractions of Zn in the soil samples treated with ZnSO4 were modified after vermicompost application and its availability increased. Therefore, the application of chemical fertilizers with organic fertilizers leads to increase Zn in the soil. The results of correlation study showed that the relation between available Zn and Zn associated to Fe-Mn oxides at 1 h (r=0.77 p<0.05), 60 days after incubation (r=0.95 p<0.05), and 120 days after incubation (r=0.95, p<0.05) was significant. There was a significant correlation between available Zn and Zn in forms of solution, exchangeable and associated with carbonates, associated with Fe-Mn oxides, and associated with organic matter, which indicate the effective role of these fractions in supplying the required Zn to plant.
Conclusion: Vermicompost application in calcareous soils increased available Zn and the effect of vermicompost was not dependent on time. Over time, there was a decrease in available Zn in the presence of chemical fertilizer. Vermicompost application in calcareous soils increased all Zn fractions. According to these results, the Zn fractions in the soil treated with zinc sulfate had been changed and its availability increased during incubation time. The results of this study demonstrated that the fractions of Zn in the soils treated with ZnSO4 and vermicompost were modified and its availability increased. Therefore, the application of chemical fertilizers with organic fertilizers can increase Zn in calcareous clay soils.

کلیدواژه‌ها [English]

  • Calcareous clay soil
  • Fractionation
  • Vermicompost zinc sulfate
1- Abtahi A., Hoodaji M., and Afyuni M. 2013. The effect of biosolids (sewage sludge, urban compost, manure) on soil chemical properties and bioavailability of micronutrients (zinc, iron) by corn in two calcareous soils. Water and Soil 27(1): 14-23. (In Persian with English abstract)
2- Ahmad Abadi Z., Ghajar Sepanlou M., and Rahimi Alashti S. 2012. Effect of vermicompost on physical and chemical properties of soil. Journal of Science and Technology Agriculture and Natural Resources, Water and Soil Science 15(58): 125-137. (In Persian with English abstract)
3- Alloway B.J. 2008. Zinc in Soils and Crop Nutrition. IZA and IFA, Brussels, Belgium and Paris.
4- Almas A., Sing B.R., and Salbu B. 1999. Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature and organic matter. Journal of Environmental Quality 64: 955-962.
5- Atiyeh R.M., Subler S., Edwards C.A., Bachman G., Metzger J.D., and Shuster W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiology 44: 579-590.
6- Baghbani Arani A., Modarres Sanavy A.M., and Kadkhodaie A. 2015. Effect of wheat and bean residue along with zinc sulfate on zinc and iron concentration and grain yeild of wheat. Journal of Sustainable Agriculture and Production Science 3(25): 91-102. (In Persian with English abstract)
7- Bogusz A., and Oleszczuk P. 2018. Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil. Science of the Total Environment 636: 927-935.
8- Brazauskiene D.M., Paulauskas V., and Sabiene N. 2008. Speciation of Zn, Cu, and Pb in the soil depending on soil texture and fertilization with sewage sludge compost. Journal of Soils and Sediments 8: 184-192.
9- Gee G.W., and Bauder J.W. 1986. Particle size analysis. p. 404-407. In Klute A (ed.) Methods of Soil Analysis. Part 1. 2nd edition. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
10- He M.M., Tian G.M., Liang X.Q., Yu Y.T., Wu J.Y., and Zhou G.D. 2007. Effects of two sludge application on fractionation and phytotoxicity of zinc and copper in soil. Environmental Science 19: 1482-1490.
11- Hosseinpur A.R., and Motaghian H.R. 2014. Effect of sewage sludge application and wheat (Triticum aestivum L.) planting on availability and fractionation of zinc in some calcareous soils. Journal of Water and Soil 27: 1100-1110. (In Persian with English abstract)
12- Hosseinpur A.R., and Motaghian H.R. 2016. The effect of cow manure and vermicompost application on fractionation and availability of zinc and copper in wheat planting. Journal of Water and Soil 30: 2005-2018. (In Persian with English abstract)
13- Jalali M., and Khanlari Z.V. 2008. Effect of aging proesses on fractionation of heavy metals in some calcareous soil of Iran. Geoderma 143: 26-40.
14- Kamali S., Ronaghi A., and Karimian N. 2010. Zinc transformation in a calcareous soil as affected by applied zinc sulfate, vermicompost, and incubation time. Communications in Soil Science and Plant Analysis 41: 2318-2329
15- Kamali S., Ronaghi A., and Karimian N. 2011. Soil zinc transformations as affected by applied zinc and organic materials. Communications in Soil Science and Plant Analysis 42: 1038-1049.
16- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
17- Loeppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. p. 437-474. In D.L. Sparks (ed.) Methods of Soil Analysis. SSSA, Madison.
18- Luo Y.M., and Chiristie P. 1998. Bioavailability of copper and zinc in soils treated with alkaline stabilized sewage sludge. Journal of Environmental Quality 27: 335-342.
19- Ma Y.B., and Uren N.C. 2006. Effect of aging on the availability of zinc added to a calcareous clay soil. Nutrient Cycling in Agroecosystems 76: 11-18.
20- Malakouti M. J. 2003. The role of zinc in plant growth and enhancing animal and human health. Regional Expert Consultation in Plant, Animal and Human Nutrition: Interaction and Impact, Damascus, Syria.
21- Malakouti M.J., and Homaee M. 2006. Fertility of arid and semi-arid soils "Problems and Solutions". Tarbiat Modares University, Office of Scientific Publications. Tehran. (In Persian)
22- Nelson D.W., and Sommers L.E. 1996. Carbon, organic carbon, and organic matter. p. 961-1010. In D.L. Sparks, (ed.) Methods of Soil Analysis. SSSA, Madison.
23- Rajaei M., and Karimian N.A. 2005. Variation of time variation of cadmium in soils treated with different levels and sources of this element. 9th Soil Science Congress of Iran. Tehran. pp. 483-484.
24- Rauret G., Lopez-Sanchez J.F., Sahuquillo A., Rubio R., Davidson C., Ure A. and Quevauviller P. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Environmental Monitoring 1(1): 57-61.
25- Rezaei-chiyaneh E., Tajbakhsh M., Ghiyasi M., and Amirnia R. 2015. Effect of integrated organic and chemical fertilizers onquantitative and qualitative yield of chickpea (Cicer arietinum L.) under dry farming coditions. Research in Field Crops 1(3): 55-69. (In Persian with English abstract)
26- Rhoades J.D. 1996. Salinity: electrical conductivity and total dissolved solids. p. 417-435. In D.L. Sparks (ed.) Methods of Soil Analysis. SSSA, Madison.
27- Sharifi M., Afyuni M., and Khoshgoftarmanesh A.H. 2011. Effects of sewage sludge, compost and cow manure on availability of soil fe and zn and their uptake by corn, alfalfa and tagetes flower. Water and Soil Sience 15(56): 141-154. (In Persian with English abstract)
28- Sposito G.L., Lund J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal 46: 260-265.
29- Sumner M.E., and Miller P.M. 1996. Cation exchange capacity and exchange coefficient. p. 1201-1230. In D.L. Sparks (ed.) Methods of Soil Analysis. SSSA, Madison.
30- Tabachnick B.G., and Fidell L.S. 2012. Using Multivariate Statistics, 6th ed. Pearson publisher New Jersey. pp. 54-55.
31- Thomas G.W. 1996. Soil pH and soil acidity. p. 475-490. In D.L. Sparks (ed.) Methods of Soil Analysis. SSSA, Madison.
32- Torri S.I., and Lavado R. 2008. Zinc distribution in soils amended with different kinds of sewage sludge. Journal of Environmental Managment 88: 1571-1579.
33- Zarrabi A., Yasrebi J., Ronaghi A., Ghasemi Fasaei R., and Sameni A. 2018. Influence of zinc sulfate and municipal solid waste compost on chemical forms of zinc in calcareous soils. Arid Land Research and Management 32(2): 170-183.
CAPTCHA Image