Document Type : Research Article
Authors
Shahid Chamran University of Ahvaz
Abstract
Introduction: Adsorption plays a determinant role in the mobility and bioavailability of potassium in soils. Adsorption decreases the solution phase concentration, resulting in very low diffusive fluxes and small transfer by mass flow of soil solution. The K fixation in soils which occurs bytransformation of available forms into unavailable ones, influences the effectiveness of fertilization in soil-plant system. Thus, understanding the mechanism that involves adsorption of K in soil is important because soils may contain widely variable pools of K which are potentially mobilized by chemical weathering of soil minerals. The clay minerals types, pH, soil organic matter (SOM), hydroxide aluminum, soil moisture status, cation exchange capacity (CEC), fertilization and tillage system are the major factors affecting the equilibrium. Adsorption sites for K by organic matter are similar to planar surfaces like kaolinite clays. Soil pH has also significant effect on K adsorption as CEC increases with increase in pH. Knowledge about the variation in behavior of K adsorption among different soils is necessary to predict the fate of applied K fertilizers in soils and to make precise K fertilizer recommendations. The objective of this study was to evaluate the effect of soil organic matter and pH on the adsorption of K by three calcareous soils of Khuzestan Province, at southwest of Iran, having different mineralogical properties.
Materials and Methods: Three soil samples (Izeh, Shavour, Ahvaz) were collected from different areas of Khuzestan Province and their physicochemical and mineralogical properties were determined. Potassium adsorption experiments were performed by pouring 2g of each air-dried and Ca+2-saturated soils, with (control) and without (H2O2) organic matter into polyethylene tubes and adding 20 ml of the stock solution of KCl with initial concentrations of 10, 20, 50, 100 and 200 mg l-1 at pH=6 and pH=7.5. The tubes were shaken at 150 rpm for 24h, as the equilibrium time, at 25 ˚C. The pH of the soils was adjusted by application of 0.1 N HCl and NaOH solutions every 4 hours during the shaking period. The soil samples dissolved in potassium solutions (1:10w/v) were centrifuged at 3000 rpm for 15min. Then, the supernatant was filtered through filter paper (Wathman filters No.42) and the potassium concentrations in the supernatants were determined by flame photometer method. The amount of sorbed potassium in soils was calculated with the equation:
(1)
where q (mg kg−1) is the amount of adsorbed K onto soil particles, Co and Ce (mg l−1) are the initial and equilibrium concentration of the potassium in solution, respectively; V is the solution volume (ml), and M is the weight of air-dried soil (kg). The data were then fitted by linear Freundlich and Langmuir models.
Results and discussion: Among the important geochemical properties of soils for the adsorption of cations are the contents of organic matter, pH, clay contents, and cation exchange capacity (CEC). Accordingly, organic matter, pH, clay and cation exchange capacity contents were 3.09%, 7.62, 20.5% and 16.7 cmol (+) /kg for Izeh, 0.79%, 7.52, 50.5% and 11.31cmol (+) / kg for Shavoor soil and 0.95%, 7.15, 20% and 7.39 cmol (+) / kg for Ahvaz soils. The mineralogical experiments showed that the order of dominant clay minerals in the soils are Vermiculite > Illite > Chlorite > in Izeh, Illite >Vermiculite > Chlorite in Shavoor and Vermiculite > Chlorite >Illite in Ahvaz soils. The results indicated that potassium sorption isotherms in the soils are L-type and both Freundlich and Langmuir equations are able (r2>0.9) to explain the results of the potassium adsorption in the soils studied. Potassium sorption capacity of Freundlich equation (kf) and maximum sorption capacity of potassium (a) in Langmuir equation were obtained between 12.47 to 32.59 (l g-1) and 7.50 to 22.13 mg kg-1, respectively at control and 22.34 to 41.16 (l g-1) and 17.81 to 28.59 mg kg-1, respectively at H2O2 treatments. The distribution coefficient is used to characterize the mobility of cations in soil; low Kd values imply that most of the cation remains in solution, and high Kd values indicate that the cation has great affinity for the surface of adsorbents. Mean content of potassium distribution coefficient at Shavoor soil was significantly higher than other soils which can be attributed to the high content of clay minerals such as illite. Moreover, the results indicated that by increasing the pH values of the soils from 6 to 7.5 the adsorption efficiency of potassium in Izeh, Shavoor and Ahvaz soils increased to 38.3, 8.3, and 26.1%, respectively.
Conclusion: Potassium adsorption in soil is affected by content and type of clay minerals. so that the soils with high illite content have more capacity for sorption and fixation of potassium in soil. On the other hand, organic matter removal from soils increased the potassium sorption by mineral components (especially clay minerals) of the soil studied. Moreover, with an increase in soil pH the potassium sorption increased significantly.
Keywords
Send comment about this article