دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا همدان

2 فردوسی مشهد

چکیده

هدف مطالعه حاضر بررسی اثر ورمی‌کمپوست بر ویژگی‌های شیمیایی، فیزیکی، هیدرولیکی و آبشویی املاح و کلوئیدهای خاک است. به‌منظور اصلاح خاک، 45/1 درصد وزنی ورمی‌کمپوست با خاک طبیعی مخلوط و ویژگی‌های فیزیکی، شیمیایی و هیدرولیکی دو خاک طبیعی و خاک دارای ورمی‌کمپوست تعیین گردید. سپس، ستون‌هایی با طول و قطر 20 و 95/5 سانتی‌متر تهیه و با 10 سانتی‌متر خاک پر شد تا عمل آبشویی به‌مدت 24 ساعت در حالت اشباع به‌درون آن‌ها انجام شود. محلول‌های خروجی در زمان‌های مختلف جمع‌آوری و مقادیر سدیم، نیترات، کربن آلی محلول، کل املاح محلول (TDS) و کلوئید پس از اندازه‌گیری به صورت تجمعی تا 6 و 24 ساعت آبشویی محاسبه و مقایسه میانگین‌ها در سطح 5% انجام شد. ورمی‌کمپوست، از ویژگی‌های شیمیایی ماده آلی، کربن آلی، نیترات قابل استخراج، سدیم محلول، سدیم محلول و تبادلی، EC و TDS را به‌اندازه 42/12، 9/12، 96/118، 43/80، 48/44، 4/109 و 4/109 درصد افزایش و pH را 35/2 درصد کاهش داد. کاهش 81/3 درصدی چگالی ظاهری، افزایش 38/1، 25/7 و 6/5 درصدی تخلخل، هدایت هیدرولیکی و سرعت آب‌حفره‌ای و جابجایی منحنی رطوبتی به سمت رطوبت‌های بیشتر در اطراف نقطه اشباع و پژمردگی دائم از دیگر اثرات ورمی‌کمپوست است. طبق نتایج آبشویی، ورمی‌کمپوست موجب آبشویی معنی‌دار سدیم، نیترات، کربن آلی، TDS و کلوئید خاک در سطح احتمال 5 درصد و کاهش نرخ آن‌ها در زمان‌های طولانی‌تر شد. علی‌رغم نتایج مثبت کاربرد ورمی‌کمپوست، فرآیند آبشویی24 ساعته به‌سبب خروج تنها 8 درصد از TDS بخش ورمی‌کمپوست خاک، نقش موثری در کاهش شوری خاک نداشت در حالی که سبب خروج 6/44 درصد از نیترات ورمی‌کمپوست خاک شد که ‌می‌تواند نگران‌کننده باشد. با توجه به اینکه این مطالعه تنها بر روی یک خاک شنی‌لومی در شرایط آزمایشگاهی انجام شده لذا نتایج آن قابل تعمیم به دیگر خاک‌ها نبوده و برای خاک‌های با بافت متفاوت انجام مجدد این مطالعات توصیه می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

The Role of Vermicompost on the Change of Physical, Chemical, Hydraulic and Leaching Components of a Sandy Loam Soil

نویسندگان [English]

  • H. Bagheri 1
  • H. Zare Abyaneh 1
  • azizallah izady 2

1 Bu-ali Sina University

2

چکیده [English]

 
Introduction: Vermicompost is a type of biological organic fertilizer obtained from earthworm activity. Vermicompost is used in sustainable agriculture due to its beneficial effects on diversity of plant nutrients and physical-hydraulic modification of soil. However, high presence of solutes in the structure of vermicompost causes soil salinity, increases soil sodium content and changes soil pH. Soil flushing is one of the well known strategies to minimize the mentioned disadvantages of vermicomposting. Although flushing can reduce the soil salinity and sodium content, it leads to transportation of some soil substances such as nitrate, dissolved organic carbon and colloids which their tracing is necessary because of soil quality monitoring and possibility of water resources pollution. The objective of the current study was to investigate the effects of vermicomposting on soil chemical, physical and hydraulic properties and its role on the amount of soil total dissolved salts (TDS), sodium, nitrate, dissolved organic carbon and leaching behavior of colloids.
Materials and Methods: To treat the soil, 1.45 weight percent of vermicompost (17.68 tones/hectare) was mixed with regular soil. Physical, chemical and hydraulic properties of soil were determined. PVC columns with length of 20 cm and internal diameter of  5.95 cm were used and filled with soil to perform leaching during 24 hrs in saturated condition  experiment. The effluent of columns were collected at various interval times, and their sodium, nitrate, dissolved organic carbon, TDS and colloid contents were measured and the cumulative amounts of them were calculated at 6 and 24 hrs. All experiments were carried out in three replications, and the mean comparison of leaching parameters was done according to Duncan's multiple range test at probability level of 5%.
Results: Vermicompost increased the studied soil chemical properties i.e, organic matter, organic carbon, extractable nitrate, soluble sodium, soluble and exchangeable sodium, EC and TDS to 12.42, 12.9, 118.96, 80.43, 44.48, 109.4 and 109.4 %, respectively and decreased soil pH to 2.35 %. Soil bulk density reduction to 3.81 % and enhancement of soil porosity, saturated hydraulic conductivity and the pore water velocity to 1.38, 7.25 and 5.6 %, respectively are the other results of vermicompost application. The used vermicompost fertilizer caused displacement of soil water retention curve to more moisture around of saturated and permanent wilting points and reduction of air entry potential. In this regard, vermicomposting increased all of soil hydraulic coefficients of van Genuchten model including θr, θs, α and n, and its effect was specially more on θr and α. The result of leaching experiments showed that the amounts of leached TDS, sodium, nitrate, dissolved organic carbon and colloid in vermicompost-containing soil during 6 hrs were 491.4, 65.22, 116.71, 47.68 and 24.86, and during 24 hrs were 946.3, 72.16, 146.26, 95.11 and 41.97 mg/Kg, respectively. For the natural soil, these amounts during 6 hrs were 240.9, 11.84, 20.08, 23.2 and 15.11, and during 24 hrs were 665.6, 15.69, 44.48, 58.34 and 29.39 mg/Kg, respectively. Therefore, vermicompost significantly increased the amounts of leached TDS, sodium, nitrate, dissolved organic carbon and colloid, because of containing more contents of solute, sodium, nitrate and organic matter in its structure. It also increased the porosity and hydraulic conductivity of soil, and made changes in soil water retention curve (P<0.05). The presence of more sodium in vermicompost together with its effect on soil porosity enhancement increased the colloid dispersion and consequently its leaching. In addition, the leaching rate of all of parameters at 24 hrs in comparison to 6 hrs decreased significantly due to high amount of solute leaching through mass flow at initial time of leaching experiment and leaching residual solute by time-consuming process of diffusion.
Conclusion: Although vermicompost can enriched the soil due to increasing nitrate and organic matter contents, it leads to soil salinity and increases sodium contents. Flushing the soil treated by vermicompost removed the amounts of TDS, sodium, nitrate to 10.4, 76.2 and 44.6 % during 24 hrs. Therefore, leaching had a considerable effect on soil sodium reduction and a little effect on soil salinity reduction. Moreover, in comparison to chemical fertilizers, the high nitrate fraction of applied vermicompost resulted in sustainability of soil fertility. It is expected soil salinity and nitrate leaching fraction of vermicompost will be reduce by managing leaching methods, treating vermicompost before using and reducing fertilizer application rate. Thus, the results of current study warn the farmers who used vermicompost in soil to control the soil salinity, ground water pollution and vertical colloid migration.

کلیدواژه‌ها [English]

  • Soil hydraulic coefficients
  • Soil water retention curve
  • Dissolved organic carbon leaching
  • Nitrate leaching
  • Colloid leaching
1- Abbasi F. 2007. Advanced soil physics. First edition, Tehran University Press. (In Persian)
2- Ahmadabadi Z., Ghajar Sepanlou M., and Rahimi Alashti S. 2012. Effect of Vermicompost on Physical and Chemical Properties of Soil. Journal of Water and Soil Science 15(58): 125-137. (In Persian)
3- Arancon N.Q., Edwards C.A., and Bierman P. 2006. Influences of vermicomposts on field strawberries: part 2. Effects on soil microbiological and chemical properties. Bioresource Technology, 97: 831–840.
4- Arnarson T.S., and Keil R.G. 2000. Mechanisms of pore water organic matter adsorption tomontmorillonite. Marine Chemistry 71: 309–320.
5- Asghari S., Neyshabouri M.R., Abbasi F., Aliasgharzad N., and Oustan S. 2009. The effects of four organic soil conditioners on aggregate stability, pore size distribution and respiration activity in a sandy loam soil. Turkish Journal of Agriculture and Forestry 33: 47–55.
6- Asghari Sh., Abbasi F., Neyshabouri M.R., Oustsan Sh., and Aliasgharzad N. 2011. Effects of Four Organic Soil Conditioners on Some Hydraulic and Solute Transport Parameters in a Sandy Loam Soil. Journal of Water and Soil Conservation 18(2): 177-195. (In Persian)
7- Bagheri H., and Zare Abyaneh H. 2018. Simulation of nitrate and sodium transport in soil treatment with vermicompost under different irrigation regimes. Iranian Journal of Irrigation and Drainage 11(5): 888-899. (In Persian with English abstract)
8- Bhatnagar A., Ji M., Choi Y., Jung W., Lee S., and Kim S.S. 2008. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology 43(4): 886-907.
9- Bolan N.S., Adriano D.C., Kunhikrishnan A., James T., Mcdowell R., and Senesi, N. 2011. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy 110: 1–75.
10- Bradford S.A., Yates S.R., Bettahar M., and Simunek J. 2002. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resource Research 38(12): 1-12.
11- Brady N.C., and Weil R.R. 2001. The nature and properties of soils. Prentice Hall.
12- Bybordi M. 2004. Principles of Irrigation Engineering. First edition, Tehran University. (In Persian)
13- Carter M., and Gregorich E. 2008. Soil Sampling and Methods of Analysis. 2nd ed. London: CRC Press, Taylor and Francis Group.
14- Chaganti V.N., Crohn D.M., and Simunek J. 2015. Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agricultural Water Management 158: 255-265.
15- Denef K., and Six J. 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science 56: 469-479.
16- Emami H., and Astaraei A.R. 2012. Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic Soil. Journal of Agricultural Science and Technology 14: 1625-1636.
17- Fanun M. 2014. The role of colloidal systems in environmental protection. Amsterdam, Elsevier.
18- Feng X., Simpson A.J., and Simpson M.J. 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry 36: 1553–1566.
19- Gelik I., Ortas I., and Kilik S. 2004. Effect of compost, Mycorhiza, Mnure and fertilizer on some physical properties of Chromoxerert soil. Soil and Tillage Research 78: 59-67.
20- Haghighat N., Mohammadi Torkashvand A., and Pazira E. 2017. Effect of natural and artificial moisture absorbents on delay of permanent wilting point coefficient. Journal of Water and Soil Resource Conservation 6(2): 31-43. (In Persian).
21- Hamdi W., Gamaoun F., Pelster D.E., and Seffen M. 2013. Nitrate Sorption in an Agricultural Soil Profile. Applied and Environmental Soil Science, Article ID 597824: 1-7.
22- Institute of Standards and Industrial Research of Iran. 2010. Compost - Sampling and physical and chemical test methods. No. 13320, 1st ed. Iran. (In Persian)
23- Kafil M., Moazed H., and Moradzadeh M. 2018. Simulation of nitrate and ammonium ions leaching in a sandy loam soil using analytical and numerical models. Journal of Water and Soil Conservation 25(3): 255-267.
24- Kharrazi M., Unesi H., and Abedini J. 2013. Effect of corn waste blended with cow dung and pape on vermicompost qualities using Eisenia fetida. Agronomy Journal 103: 179-191. (In Persian)
25- Khosravi A., Zarei M., and Ronaghi A.M. 2017. Effect of Claroideoglomus etunicatum, vermicompost and phosphate sources on root colonization and growth of lettuce. Journal of Soil Management and Sustainable Production 7(2): 167-181. (In Persian with English abstract)
26- Kleimeier C., Rezanezhad F., van Cappellen P., and Lennartz B. 2017.Influence of pore structure on solute transport in degraded and undegraded fen peat soils. Mires and Peat 19(18): 1–9.
27- Levy G.J., and Torrento J.R. 1995. Clay dispersion and macro aggregate stability as affected by exchangeable potassium and sodium. Soil Science 160(5): 352-358.
28- Lim S.L., Wu T.Y., Lim P.N., Yee P., and Shak K. 2014. The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture 95.6: 1143-1156.
29- Mamedov A.I., Ekberli I., Gülser C., Gümüş I., Çetin U., and Levy G.L. 2016. Relationship between soil water retention model parameters and structure stability. Eurasian Journal of Soil Science 5(4): 314-321.
30- Masciandaro G., Macci C., Doni S., and Ceccanti B. 2010. Use of earthworms (Eisenia fetida) to reduce phytotoxicity and promote humification of pre-composted olive oil mill wastewater. Journal of the Science of Food and Agriculture 90: 1879–1885.
31- Mirzaei-Takhtgahi H., and Ghamarnia H. 2017. The concurrent effect of Vermicompost and unconventional water on soil physical properties. Journal of Water and Irrigation Management 7(2): 197-210. (In Persian with English abstract)
32- Mirzakhani R. 2003. Introduction to Soil Physics. University Publication Center. (In Persian)
33- Nada W.M., Van Brensburg L., Claassens S., and Blumenstein O. 2011. Effect of Vermicompost on Soil and Plant Properties of Coal Spoil in the Lusatian Region (Eastern Germany). Communications in Soil Science and Plant Analysis 42: 1945–1957.
34- Naghavi H., Hajabbasi M.A., and Afuni M. 2005. Effect of cattle manure on some physical properties, hydraulic parameters and bromide transport of a sandy loam soil in Kerman. Journal of Science and Technology of Agriculture and Natural Resources 9(3): 93-103. (In Persian with English abstract)
35- Oo A.N., Iwai C.B., and Saenjan P. 2013. Soil properties and maize growth in saline and nonsaline soils using cassava–industrial waste compost and vermicompost with or without earthworms. Land Degradation and Development 26: 300-310.
36- Panuccio M.R., Muscolo A., and Nardi S. 2001. Effect of humic substances on nitrogen uptake and assimilation in two species of pinus. Journal of Plant Nutrition 24(4-5): 693-704.
37- Prabha M.L. 2009. Waste management by vermitechnology. Indian Journal Of Environmental Protection, 29: 795-800
38- Rakhshandehroo G., and Eslami Haghighat A. 2008. Evaluating soil-water characteristic curve based on local porosity theory. Journal of Water and Wastewater 19(2): 67-76. (In Persian with English abstract).
39- Samavat S., Tehrani M.M., Bazargan K., and Basirat M. 2014. Manual of how to check organic fertilizers. Technical report 46316, Soil and Water Research Institute. (In Persian)
40- Sharma R.C., and Banik P. 2014. Vermicompost and fertilizer application: Effect on productivity and profitability of baby corn (Zea mays L.) and soil health. Compost Science & Utilization 22: 83-92.
41- Shete M.B., Chaudhary S.M., and Warade S.D. 1993. A note on use of fym and vermicompost on yield of white onion cv phule safed. Allium Improvement Newsletter 3: 36-38.
42- Siller W.S., Fredlund D.G., and Zakerzadeh N. 2001. Mathematical attributes of some soil water characteristic curve models. Geotechnical and Geological Engineering 19: 243-283.
43- Soane B.D. 1990. The role of organic matter in soil compactibility: A review. Soil and Tillage Research 16(1-2): 179-201.
44- Sugita F., and Giliham R.W. 1993. effect of pore-size variation in a porous medium on reactive solute transport. Tracers in Hydrology 171-177.
45- Tajodini M., Jalali V.R., and Sarcheshmehpoor, M. 2015. The effect of different sizes and amounts of vermicompost on seedlings characteristics of grain maize (SC704). Cereal Research 5(3): 289-300. (In Persian with English abstract)
46- Vervoort R.W., Radcliffe D.E., and West L.T. 1999. Soil structure development and preferential solute flow. Water Resources Research 35: 913-928.
47- Walshe G.E., Pang L., Flury M., Close M.E., and Flintoft M. 2010. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 44: 1255–1269.
48- Wang Z., Zhang W., Li S., Zhou J., and Liu D. 2016. Transport of Silica Colloid through Saturated Porous Media under Different Hydrogeochemical and Hydrodynamic Conditions Considering Managed Aquifer Recharge. Water 8(555): 1-14.
49- Weber J.B., Warren R.L., Swain L.R., and Yelverton F.H. 2007. Physicochemical property effects of three herbicides and three soils on herbicide mobility in field lysimeters. Crop Protection 26(3): 299–311.
50- Wilson G.V., Tyler D.D., Logan J., and Turnage K. 1991. Tillage and cover crop effects on nitrate leaching. In Cover Crops for Clean Water, ed. Hargrove W.L. Ankeny, IA: Soil Water Conservation Society.
51- Yang Y., Liang Y., You Y., Ding Z., Dang, Z., and Shi, Z. 2019. Predicting Kinetics of As(V) Adsorption and Desorption on Mixed Minerals of Ferrihydrite and δ-MnO. Soil Science Society of America Journal 83(2): 348.
52- Yang Y., Liu P., Zhang W., Liu Z., Sun H., Zhang LK., Zhao J., Song W., Liu L., An S., and Yao J. 2016. Effect of the Pore Size Distribution on the Displacement Efficiency of Multiphase Flow in Porous Media. Journal of Natural Gas Science and Engineering 14: 610–616.
53- Yari M., Rahimi Gh., Moradi S., Ebrahimi E., and Sadeghi, S. 2016. Effect of Municipal Solid Waste Compost Application on the Fractions of Various Heavy Metals in Three Soil Textures. Soil Research 30(3): 329-341. (In Persian with English abstract).
54- Zhang H., and Selim H. 2005. Kinetics of arsenate adsorption–desorption in soils. Environmental Science and Technology 39(16): 6101-8.
55- Zhang J., and Stanforth R. 2005. Slow Adsorption Reaction between Arsenic Species and Goethite (α-FeOOH): Diffusion or Heterogeneous Surface Reaction Control. Langmuir 21(7): 2895–2901.
CAPTCHA Image