دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 زنجان

3 گروه شیمی تجزیه، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

ﺗﺜﺒﯿﺖ ﺷﯿﻤﯿﺎﯾﯽ آرسنیک ﺑﺎ اﺳﺘﻔﺎده از ﺟﺎذبﻫﺎی ﻣﺨﺘﻠﻒ، یکی از روش‌های جدید پالایش آرسنیک خاک اﺳﺖ. ﭘﮋوﻫﺶ ﺣﺎﺿﺮ ﺑﺎ ﻫﺪف ﺑﺮرﺳﯽ ﮐﺎراﯾﯽ ﻧﺎﻧﻮذرات مگنتیت، سولفات آهن، فروسیلیس، فروسیلیس‌منیزیم و خاک آهن در ﮐﺎﻫﺶ ﺗﺤﺮک آرﺳﻨﯿﮏ در ﺧﺎکﻫﺎی آﻟﻮده اﻧﺠﺎم ﺷﺪ. ﯾﮏ آزﻣﺎﯾﺶ ﻓﺎﮐﺘﻮرﯾﻞ ﺑﺎ دو ﻓﺎﮐﺘﻮر ﻧﻮع اصلاح‌کننده (نانوذرات مگنتیت، فروسیلیس، فروسیلیس‌منیزیم، خاک آهن گل گهر، خاک آهن اسفوردی و سولفات آهن) و ﻣﻘﺪار اصلاح‌کننده در چهار سطح (صفر، 1/0، 2/0 و 3/0 درصد آهن)، در یک خاک آلوده به آرﺳﻨﯿﮏ (20 میلی‌گرم بر کیلوگرم) در ﻗﺎﻟﺐ ﻃﺮح ﮐﺎﻣﻼً ﺗﺼﺎدﻓﯽ در ﺳﻪ ﺗﮑﺮار اﻧﺠﺎم ﺷﺪ. ﭘﺲ از ﮔﺬﺷﺖ ﯾﮏ ﻣﺎه، ﻏﻠﻈﺖ آرﺳﻨﯿﮏ، آهن، روی و مس فراهم خاک با استفاده از اسید کلریدیک 1/0 مولار استخراج و با دستگاه جذب اتمی و ICP اندازه‌گیری شد. سطح 3/0 درصد اصلاح‌کننده بیشترین کاهش غلظت آرسنیک فراهم خاک را نشان داد. کمترین غلظت آرسنیک قابل‌جذب در خاک مربوط به مقدار 3/0 درصد آهن نانوذرات مگنتیت و بیشترین آن مربوط به تیمار شاهد بود. افزایش اصلاح‌کننده‌ها باعث افزایش غلظت آهن و روی خاک شد، بیشترین غلظت آهن و روی در تیمار 3/0 درصد فروسیلیس، خاک آهن گل گهر و اسفوردی مشاهده شد. کاربرد نانوذرات مگنتیت آرسنیک قابل استخراج با اسید کلریدریک 1/0 مولار را بیشتر از سایر جاذب‌ها کاهش داد و در بین اصلاح‌کننده‌های مورد استفاده، نانوذرات مگنتیت کارایی بیشتری در تثبیت شیمیایی آرسنیک خاک نشان داد. سایر اصلاح‌کننده‌ها نیز توانستند بخشی از آرسنیک خاک را تثبیت کنند و با توجه به فراهمی و قیمت مناسب، امکان استفاده از اصلاح‌کننده‌های حاوی آهن در اراضی آلوده به آرسنیک پیشنهاد می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Magnetite Nanoparticles and Some Iron-Containing Compounds on the Availability of Arsenic, Iron, Zinc and Copper in Soil

نویسندگان [English]

  • Sh. Hassani 1
  • Mohammad Babaakbari 2
  • M.R. Neyestani 3
  • M.A. Delavar 1

1 Department of Soil Science, College of Agriculture, University of Zanjan, Zanjan, Iran

2

3 Department of Analytical Chemistry, Faculty of Science, Zanjan University, Zanjan, Iran

چکیده [English]

Introduction:High concentrations of As in contaminated soils represent a potential risk for groundwater sources and threat the food chain. It has been found that the iron-containing compounds used in remediation of As contaminated soils have distinct effects on the solubility of As and can be used as adsorbents for As removal from aqueous and soil solutions. The objectives of this study were to determine As stabilization in soil, with iron-containing compounds and also to compare the fixation of magnetite nanoparticles, ferrous sulfate, ferrosilicon, magnesium ferrosilicon and iron oxide in fixation of arsenic in contaminated soils.
Materials and Methods: A factorial experiment was conducted using a completely randomized design with three replications. The experimental factors were the amendment types and levels. The modifiers used were magnetite nanoparticles, ferrous sulfate, ferrosilicon, magnesium ferrosilicon, Sfordi, and Golgohar iron soil containing 0, 0.1, 0.2 and 0.3% iron. The soil was artificially contaminated with As (20 mg/kg) using Na2HAsO4.7H2O salt and incubated for 1 month. At the end of incubation time, the modifiers were added to the As contaminated soils and after 3 months, the available fractions of arsenic, iron, zinc and copper were extracted using 0.1 M HCl and measured with ICP.
Results: The results showed that the type and the amount of the modifiers had a significant effect on the available fraction of arsenic and iron in soil (extractable fraction with 0.1 M hydrochloric acid). The available fraction was reduced due to the addition of all  modifiers: Magnetite nanoparticles > iron sulfate > magnesium ferrosilicon > ferrosilicon > Esfordi iron soil and Golgohar iron soil, respectively. The highest decrease in the concentration of available arsenic occurred in the soils treated with 0.3% of modifier. Application of 0.3% levels of magnetite nanoparticles, iron sulfate, ferrosilicon, ferrosilicon magnesium, Golgohar iron soil and Esfordi iron soil stabilized 91, 63, 57, 32 and 48% of arsenic extractable with 0.1 M HCl, respectively. Application of 0.3% of magnetite nanoparticles reduced available arsenic more than other adsorbents. Among the studied  modifiers, magnetite nanoparticles showed more efficiency in chemical stabilization of arsenic in soil. The application of magnetite nanoparticles increased the Fe available fraction in soil. Golgohar iron soil, ferrosilicon, Esfordi iron soil, magnesium ferrosilicon, ferrous sulfate and Magnetite nanoparticles, increased the iron extractable with 0.1 M HCl of the soil, respectively. The highest Fe concentrations were observed in 0.3% of Gol Gohar soil, ferrosilicon, Esfordi soil and ferrosilicon. Increasing the modifiers decreased soil copper extractable with 0.1 M hydrochloric acid concentration and increased soil zinc extractable with 0.1 M hydrochloric acid concentration, which was not statistically significant.
Conclusion: Application of magnetite nanoparticles reduced arsenic concentration more than other adsorbents and showed more efficiency in chemical stabilization of soil arsenic. Other modifiers have also been able to stabilize the arsenic in the soil, suggesting the possibility of using iron-containing modifiers in arsenic-contaminated soils. The use of modifiers increased the iron concentration in the soil. Due to their reasonable price and availability, iron sulfate and magnesium ferrosilicon are recommended for soil arsenic stabilization. At 0.3% soil level, Gol Gohar and Esfordi iron soil were able to reduce 32% and 48% the arsenic concentration, respectively and are recommended for arsenic stabilization in contaminated soil. Golgohar, ferrosilicon, Esfordi and magnesium iron soils caused the highest increase in soil iron concentration. Due to the concentration of other soil elements and the price of modifiers, the level of 0.2% of iron sulfate, Gol Gohar and Esfordi iron soil, ferrosilicon and magnesium ferrosilicon is recommended for stabilization of arsenic in contaminated soil.

کلیدواژه‌ها [English]

  • Chemical fixation
  • Iron sulfate
  • Heavy metals
  • Golghohar
  • Esfordi
  1. Abdollahi A., Norouzi Masir M.,Taghavi M., and Moezzi A. 2019. Effect of zinc oxide nanoparticles on zinc chemical forms in soil solution phase and its correlation withconcentration and uptake of zinc in wheat. Applied Soil Research 7(4):35-46. (In Persian)
  2. Adriano D.C. 2001. Arsenic. In Trace elements in terrestrial environments (pp. 219-261). Springer, New York, NY.
  3. Agrafioti E., Kalderis D., and Diamadopoulos E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management 133: 309-314.
  4. Ali S. S., Begum M., Rashid M.H., and Huq S.I. 2016. Arsenic mobility in saline soil and its impact on plant growth. Bangladesh Journal of Scientific Research 29(2):153-161.
  5. Arai Y., and Sparks D.L. 2002. Residence time effects on arsenate surface speciation at the aluminium oxide-water interface. Soil Science 167: 303-314.
  6. Babaakbari Sari M.,  Farahbakhsh M., Savaghebi G.R., and Najafi N. 2014. Investigation of arsenic concentration in some of the calcareous soils of Ghorveh and arsenic uptake by maize, wheat and rapeseed in a natural contaminated soil. Water and Soil Science 23(4): 1-16. (In Persian with English abstract)
  7. Carabante I., Grahn M., Holmgren A., Kumpiene J., and Hedlund J. 2009. Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 346(1-3): 106-113.
  8. Chang Y.C., and Chen D.H. 2005. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. Journal of Colloid and Interface 283(2): 446-451.
  9. Fendorf S., Nico P.S., Kocar B.D., Masue Y., and Tufano K.J. 2010. Arsenic chemistry in soils and sediments. Developments in Soil Science 34: 357-378.
  10. Grossl P.R., and Sparks D.L. 1995. Evaluation of contaminant ion adsorption/ desorption on goethite using pressure-jump relaxation kinetics. Geoderma 67:87-101.
  11. Gulz P.A., Gupta S.K., and Schulin R. 2005. Arsenic accumulation of common Plants from contaminated soils. Plant and Soil 272: 337-347.
  12. Hartley W., Edwards R., and Lepp N.W. 2004. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environmental Pollution 131: 495-504.
  13. Hudson Edwards K.A., Houghton S.L., and Osborn A. 2004. Extraction and analysis of arsenic in soil and sediments. Tends in Analytical Chemistry 23: 745-752.
  14. Khadem M.I.N., and Golchin A. 2019. Risk Assessment of Contamination of the Country's Soil and Water Resources with Arsenic.  Iranian Journal of Soil and Water Research 50(7): 1595-1617. (In Persian with English abstract)
  15. Komarek M., Vanek A., and Ettler V. 2013. Chemical stabilization of metals and arsenic in contaminated soils using oxides- a review. Environmental Pollution 172: 9-22.
  16. Lin Z., and Puls R.W. 2003. Potential indicators for the assessments of arsenic attenuation in the subsurface. Advance Environmental Research 7: 825–834.
  17. Lo M.C.I., Hu J., and Chen G. 2009. Iron-based magnetic nanoparticles for removal of heavy metals from electroplating and metal-finishing wastewater, p 213.
  18. Mahimairaja S., Bolan N.S., Adriano D.C., and Robinson B. 2005. Arsenic contamination and its risk management in complex environmental settings. Advances in Agronomy, 86:1-82.
  19. Manning B.A., Hunt M., Amrhein C., and Yarmoff J. 2002. Arsenic (V) Reactions with zerovalent iron corrosion products. Environmental Science and Technology 36: 54-61.
  20. Marzi M., Towfighi H., Farahbakhsh M., and Shahbazi K. 2020. Arsenic Mapping in the East Azarbaijan Province and the Feasibility Study of Decreasing Arsenic Release (A Case Study of Hashtrood). Iranian Journal of Soil and Water Research 51(8): 2101-2110. (In Persian with English abstract)
  21. Matera V. 2001. Arsenic behavior in contaminated soils: mobility and speciation. Heavey Metals Release in Soils 207-235.
  22. Matschullat J. 2000. Arsenic in the geosphere—a review. Science of the TotalEnvironment 249(1-3): 297-312.
  23. Miretzky P., and Cirelli A.F. 2010. Remediation of arsenic-contaminated soils by iron amendments: a review. Critical Reviews in Environmental Science and Technology 40(2): 93-115.
  24. Nelson R.E. 1982. Carbonate and gypsum, P 181-196. In: Page, A.L. (Ed.). Methods of Soil Analysis. Part 2. 2nd ed. Chemical and microbiological properties. Agron. Monogr. 9. SSSA and ASA, Madison, WI.
  25. Page A.L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, Part 2, Chemical microbiological properties. American Society of Agronomy, Inc, Soil Science of America, Inc. Madison, Wisconsin, USA.
  26. Prasad M., and Saxena S. 2004. Sorption mechanism of some divalent metal ions onto low-cost mineral adsorbent. Industrial and Engineering Chemistry Research 43(6): 633-640.
  27. Sadr S., Afyuni M., and Fathian Por N. 2010. Spatial variability of arsenic under different land use in Isfahan region. Journal of Water and Soil Science 13(50): 65-75. (In Farsi)
  28. Shafai S.H., Fotovat A., and Khorasani R. 2012. Effect of nanoscale Zero-Valent Iron (nZVI) on heavy metals availability in a calcareous soil. Journal of Water and Soil 26(3): 586-596
  29. Sherman D.M., and Randall S.R. 2003. Surface complexation of arsenic (V) to iron (III) (hydr) oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67: 4223-4230.
  30. Shipley H.J., Engates K.E., and Guettner A.M. 2011. Study of iron oxide nanoparticles in soil for remediation of arsenic. Nanoparticles Research 13: 2387-2397.
  31. Shipley H.J., Yean S., Kan A.T., and Tomson M.B. 2009. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature, Journal of Environmental Topical Chemical, 28(3): 509–515.
  32. Wang Y., Morin G., Ona-Nguema G., Juillot F., Calas G., and Brown G.E. 2011. Distinctive arsenic (V) trapping modes by magnetite nanoparticles induced by different sorption processes. Environmental Science and Technology 45: 7258-7266.
  33. Waychunas G.A., Rea B.A., Fuller C.C., and Davis J.A. 1993. Surface chemistry of ferrihydrite, part 1. EXAFS studies of the geometry of co precipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta 57: 2251-2269.
  34. Wenzel W.W., Kirchbaumer N., Prohaska T., Stingeder G., Lombi E., and Adriano D.C. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436: 309-323.
  35. Yean S., Cong L., Yavuz C.T., Mayo J.T., Yu W.W., Kan A.T., Calvin V.L., and Tomson M.B. 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research 20: 3255-3264.
  36. Yuan C., and Lien H.L. 2006. Removal of arsenate from aqueous solution using nanoscale iron particles. Water Quality Research Journal 41(2): 210-215.
  37. Zhang M., Pan G., Zhao D., and He G. 2011. XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Environmental Pollution 159: 3509-3514.
CAPTCHA Image