دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری علوم مهندسی آب، دانشگاه تهران، تهران، ایران

2 دانشجوی دکتری مهندسی آبیاری و زهکشی، دانشگاه تهران، تهران، ایران

3 کارشناسی ارشد در رشته مهندسی سیستم‌های انرژی، دانشگاه صنعتی شریف، تهران، ایران

4 دانشیار، گروه مهندسی آب، دانشکده ابوریحان، دانشگاه تهران، تهران، ایران

چکیده

فضا‌های سبز شهری در افزایش رطوبت نسبی، کاهش دما و تلطیف هوای کلان شهر‌ها، کنترل تشعشعات خورشید و جلوگیری از بازتاب نور‌های مزاحم موثر هستند. با توجه به اهمیت توسعه و حفظ فضا‌های سبز در شهر‌ها مصرف آب جهت آبیاری آن‌ها افزایش پیدا می‌کند از طرفی دیگر با توجه به منابع محدود آب، تخمین مناسب نیاز آبی فضای سبز نیازمند توجه ویژه است. در فضا‌های سبز گونه‌های گیاهی متفاوت با نیاز آبی مختلف در کنار هم و به صورت مختلط کشت می‌شوند و عدم توجه به این موضوع باعث هدر رفت آب خواهد گردید. بنابراین با استفاده از روش‌هایی که بتوانند تبخیر- تعرق را در فضای سبز به درستی و با دقت بیشتر برآورد نمایند می‌توان به کاهش اتلاف آب کمک کرد. در این مطالعه میزان آب مورد نیاز برای آبیاری فضای سبز پردیس کشاورزی و منابع طبیعی دانشگاه تهران با استفاده از سه روش Wucols، Pf و Ipos به مدت یک سال از فروردین تا اسفند 1399 برآورد گردید. میزان نیاز ناخالص آبیاری با روش‌های Wucols، Pf و Ipos به ترتیب برابر با 8/794، 7/722و 9/346 میلی‌متر محاسبه شد. نتایج نشان داد که روش Wucols به دلیل در نظر گرفتن پارامتر‌های بیشتر نظیر گونه گیاهی، تراکم پوشش گیاهی و ریزاقلیم دقت بیشتری در مقایسه با سایر روش‌های بر آورد نیاز آبی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evapotranspiration Estimation at Landscape Scale by WUCOLS, PF and IPOS Methods (Karaj)

نویسندگان [English]

  • Z. Sojoodi 1
  • H. Shokati 2
  • Y. Sojoodi 3
  • M. Mashal 4

1 Ph.D Student in Water Science and Engineering, University of Tehran, Tehran, Iran

2 Ph.D Student in Irrigation and Drainage Engineering, University of Tehran, Tehran, Iran

3 Graduated with a Master's Degree in Energy Systems Engineering, Sharif University of Technology, Tehran, Iran

4 Associate Professor, Department of Water Engineering, Abu Reihan College, University of Tehran, Tehran, Iran

چکیده [English]

Introduction
The constructive effects of green spaces on the quality and livability of the urban environment have been reported in many studies. Therefore, using methods that can accurately estimate the evaporation of transpiration in green space can help to reduce water loss. The purpose of estimating water demand for urban green space is also different from the purpose of determining water demand for an agricultural farm. In urban green space, the goal is to maintain good growth, appearance and acceptable plant health, while biomass production is the main goal on agricultural farms. Therefore, urban green space can typically be managed using an irrigation area that is less than the amount of water needed to produce agricultural products. Due to the limited water resources in arid areas, the use of less irrigation in urban green space can be desirable to save water consumption.
Materials and Methods
The Wucols method for estimating Water requirements in green space was developed by Castello et al. (4). They developed the Wucols water taxonomy guidelines for planting green space in California. The Wucols method estimates evapotranspiration in green space using reference evapotranspiration and a set of coefficients (Species factor, density factor and microclimate factor). PF method is the minimum acceptable irrigation for green space plants that emphasizes maintaining the beauty of the plant. In this method, the water required by green space plants is considered as a percentage of ET0 so as not to reduce their appearance and performance. In this approach, PF is a regulatory factor that is actually considered instead of Kc and multiplied by ET0, except that the emphasis is on the appearance of the plant and not on its optimal growth and yield. The IPOS method has been developed by the Government of South Australia for planning and managing water needs in public open spaces, especially sports lawns and amusement parks. In this method, the water requirement of grass in urban open space is calculated. In this method, plant transpiration evaporation (ETL) is calculated by multiplying reference transpiration evaporation factors (ET0) by grass vegetation coefficient (Kc) by plant stress factor (Kst).
Results and Discussion
The results showed that the highest rate of evapotranspiration obtained by Wucols method was 83.38 mm during 21 Jun-21 Jul. Also, the rate of transpiration evaporation during one year of the experimental period was estimated to be 556.5 mm. The results of estimation of transpiration evaporation by PF method also show the maximum amount of transpiration evaporation during 21 Jun-21 Jul and is 75.55 mm. The evapotranspiration rate during one year was estimated to be 505.9 mm. For the Ipos method, the highest rate of transpiration evaporation was estimated to be 36.38 mm during 21 Jun-21 Jul and 242.9 mm during the experimental period. Gross irrigation requirement is estimated by considering 70% irrigation efficiency for each month using all three methods. For the Wucols method, the gross irrigation need during one year was estimated to be 794.8 mm. For the PF method was 722.7 mm and for the IPOS method was 346.9 mm. According to the reported irrigation records for the study area, which is 900 mm per year, the Wucols method has the closest result to the irrigation records.
Conclusion
The results showed that the Wucols method has the best and closest estimate according to the irrigation records of the study area. The gross irrigation requirement calculated by the Wucols method during a year is 794.8 mm, which is 12% less than the gross annual irrigation requirement of the studied green space. While PF and IPOS methods determined the amount of gross demand 20 and 62% less than the annual irrigation rate in the region, respectively. The results of this study show that the Wucols method for estimating the water requirement of plants in urban green space where there is a combination of different plant species is more reliable than the PF and IPOS methods due to the diversity of species, vegetation density and different climates.

کلیدواژه‌ها [English]

  • Agriculture
  • Climate
  • Vegetation
  • Water Requirements
  1. Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements – FAO Irrigation and Drainage (No-56). Food and Agriculture Organisation of the United Nations, Rome.
  2. Allen R.G., Howell T.A., and Snyder R.L. 2011. In: Irrigation Water Requirements, Irrigation, sixth ed. Irrigation Association, Falls Church, VA, 93–172.
  3. Costello L.R., and Jones K.S. 1994. WUCOLS project—water use classification of landscape species: a guide to the water needs of landscape plants. University of California, Cooperative Extension.
  4. Costello L.R., Matheny N.P., Clark J.R., and Jones K.S. 2000. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California. The Landscape Coefficient Method and WUCOLS III. University of California Cooperative Extension. California Department of Water Resource.
  5. Doorenbos J., Pruitt W.O., and Aboukhaled A. 1977. Guidelines for Predicting Crop Water Requirements (rev. ed.). Food and Agriculture Organization of the United Nations, Rome.
  6. Erell E., Williamson T. 2007. Intra-urban differences in canopy layer air temperature at a mid-latitude city. International Journal Climatology 27: 1243–1255. https://doi.org/10.1002/joc.1469.
  7. Edussuriya P.S. 2000. Impact of urban physical design attributes on urban air quality and microclimate: towards formulation of urban design guidelines for Mong Kok, HKU Theses Online, The University of Hong Kong (pokfulam, Hong Kong), Faculty of architecture.
  8. Edem E., Anthony A., and Greening U. 2014. The impact of greenery on the urban microclimate and environmental quality of Uyo metropolis, Akwa Ibom state, Nigeria 3: 22–27.
  9. Glenn, E.P., Mexicano, L., Garcia-Hernandez, J., Nagler, P.L., Gomez-Sapiens M.M., Tang D., Lomeli M.A., Ramirez-Hernandez J., and Zamora-Arroyo F. 2013. Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinitiesEcological Engineering 59: 176-184. https://doi.org/10.1016/j.ecoleng.2012.06.043.
  10. Hama T., Nakamura K., Kawashima S., Kaneki R., and Mitsuno T. 2011. Effects of cyclic irrigation on water and nitrogen mass balances in a paddy field. Ecological Engineering 37: 1563-1566. https://doi.org/10.1016/j.ecoleng.2011.03.032.
  11. Hilaire R.S., Arnold M.A., Wilkerson D.C., Devitt D.A., Hurd B.H., Lesikar B.J., Lohr V.I., Martin C.A., and McDonald G.V. 2008. Efficient water use in residential urban Horticulture Science 43: 2081–2092. https://doi.org/10.21273/HORTSCI.43.7.2081.
  12. Kottmeier C., Biegert C., and Corsmeier U. 2007. Effects of urban land use on surface temperature in Berlin: case study. Journal Urban Plan 133: 128–137.
  13. Kjelgren R., Rupp L., and Kilgren D. 2000. In: Water Conservation in Urban Landscapes 3: 1037–1040.
  14. Litvak E., Pataki D.E. 2016. Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendationsJournal of Arid Environments 134: 87-96.
  15. Marasco D.E., Culligan P.J., and McGillis W.R. 2015. Evaluation of common evapotranspiration models based on measurements from two extensive green roofs in NewYork City. Ecological Engineering 84: 451–462.
  16. Montague T., McKenney C., and Maurer M. 2007. Influence of irrigation volume and mulch on establishment of selected shrub species. Arboriculture Urban Forest 33: 202–209.
  17. Nouri H., Beecham S., Hassanli A.M., and Kazemi F. 2013. Water requirements of urban landscape plants: A comparison of three factor-based approaches. Ecological Engineering 57: 276-284. https://doi.org/10.1016/j.ecoleng.2013.04.025.
  18. Nouri H., Glenn E.P., Beecham S., Chavoshi Boroujeni S., Sutton P., Alaghmand S., Noori B., and Nagler P. 2016. Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: Field-based, remote sensing-based and observational-based methods. Remote Sensing 8: 492. https://doi.org/10.3390/rs8060492.
  19. Ozdogan M., Rodell M., Beaudoing H.K., and Toll D.L. 2010. Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. Hydrometeorol 11: 171–184.
  20. Petralli M., Massetti L., Brandani G., and Orlandini S. 2014. Urban planning indicators: useful tools to measure the effect of urbanization and vegetation on summer air temperatures. International Journal of Climatology 34: 1236-1244. https://doi.org/10.1002/joc.3760.
  21. Pearlmutter D., Berliner P., and Shaviv E. 2007. Urban climatology in arid regions: current research in the Negev desert. Int. Climatology 27: 1875–1886.
  22. Pittenger D.R., Shaw D.A., Hodel D.R., and Holt D.B. 2001. Responses of landscape groundcovers to minimum irrigation. Environment Horticulture 19 : 78–84.
  23. Pittenger D., Henry M., and Shaw D. 2008. Water needs of landscape plants. In: UCR Turfgrass and Landscape Research Field Day. University of California, Riverside.
  24. Rosenfeld D. 2000. Suppression of rain and snow by urban and industrial air pollution. Science 287 : 1793–1796.
  25. Robitu M., Musy M., Inard C., and Groleau D. 2006. Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy 80 : 435–447.
  26. Saeedinia M., Tarnian F., Hosseinian S.H., and Nasrollahi A.H. 2018. Estimation of the evapotranspiration and crop coefficient of Chamomile (Matricaria chamomilla) and Cumin (Cuminum cyminum L.) in Khorram Abad region. Water and Irrigation Management 8(1) : 165-175. (In Persian with English abstract)
  27. Shojaei P., Gheysari M., Nouri H., Myers B., and Esmaeili H. 2018. Water requirements of urban landscape plants in an arid environment: The example of a botanic garden and a forest park. Ecological Engineering 123: 43-53. https://doi.org/10.1016/j.ecoleng.2018.08.021.
  28. Shaw D.A., Pittenger D.R. 2004. Performance of landscape ornamentals given irrigation treatments. Based on reference evapotranspiration. Acta Horticulture 664: 607–614.
  29. Sojoodi Z., and Mirzaei F. 2020. Determination of water requirement of urban Landscape plants. Water and Irrigation Management 10(1) : 131-141. (In Persian with English abstract). 22059/JWIM.2020.295397.745.
  30. Sojoodi Z., and Mirzaei F. 2020. Evaluation of the WUCOLS Method for Estimating Water Requirements of Landscape Plants. Water Research in Agriculture 33(4) : 629-643. (In Persian with English abstract). 22092/JWRA.2020.121243.
  31. Sojoodi Z., and Mirzaei F. 2020. Estimation of Water Requirement and Plant Coefficient of Calendula Officinalis in Landscape. Water Management in Agriculture 7(1): 1-10. (In Persian with English abstract). 1001.1.24764531.1399.7.1.1.8.
  32. Snyder R.L., and Eching S.O. 2005. Microclimate corrections for urban landscape evapotranspiration. In Impacts of Global Climate Change 1-9.
  33. Snyder R.L. 2010. Landscape Irrigation Scheduling Trends in California – From WUCOLS to LIMP. 5–8.
  34. Salvador R., Bautista-Capetillo C., and Playan E. 2011. Irrigation performance in private urban landscapes: A study case in Zaragoza (Spain). Landscape Urban Plan 100: 302–311.
  35. South Australian Water Corporation-IPOS Consulting. 2008. Irrigated public open space: code of practice. In: S. Water (Ed.). IPOS Consulting, South Australia, 46.
  36. Wolf D., and Lundholm J.T. 2008. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecological Engineering 33: 179-186. https://doi.org/10.1016/j.ecoleng.2008.02.008.

 

CAPTCHA Image