دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 موسسه تحقیقات خاک و آب، کرج

2 مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

برآورد دقیق تبخیر­تعرق مرجع (ET0) یکی از عوامل مهم برای محاسبۀ نیاز آبی و آب مصرفی گیاهان زراعی و باغی است. پیچیدگی فرآیند تبخیرتعرق و وابستگی آن به داده­های هواشناسی برآورد دقیق این متغیر را دشوار کرده است. ویژگی غیرخطی، عدم قطعیت ذاتی و نیاز به اطلاعات اقلیمی متنوع در برآورد ET0 از دلایلی بوده­اند که باعث شده پژوهشگران به­سوی روش­های داده­کاوی همچون شبکه عصبی مصنوعی (ANNs)، جنگل تصادفی (RF) و ماشین بردار پشتیبان (SVM) روی آورند. در این تحقیق، داده‌های هواشناسی در بازه زمانی ده ساله (1399-1389) از ایستگاه­های هواشناسی استان قزوین جمع­آوری شد. ابتدا مقادیر ET0 در سامانه نیاز آب که از روش پنمن-مانتیث محاسبه شد، استخراج گردید. سپس این مقادیر به‌عنوان مقادیر واقعی (اندازه­گیری شده) با مقادیر تخمینی بدست آمده با روش­های داده­کاوی (ANNs، RF و SVM) ارزیابی شد. جهت اعتبارسنجی نتایج بدست آمده، داده­های هر ایستگاه به دو مجموعه آموزش (دوسوم داده­ها) و آزمون (یک­سوم داده­ها) تقسیم شدند. نتایج بررسی­های آماری و دیاگرام نشان دادند، در هر سه روش استفاده شده با در نظر گرفتن تمامی پارامترهای هواشناسی (میانگین دمای هوا، میانگین رطوبت نسبی، ساعت آفتابی و سرعت باد) به­عنوان ورودی مدل، در ایستگاه سینوپتیک قزوین و ایستگاه کلیماتولوژی نیروگاه رجایی، در هر دو مرحله آموزش و آزمون، ET0 با دقت بالاتری برآورد شد. همچنین در این تحقیق دقت نتایج روش ANNs نسبت به دو روش دیگر به­طور نسبی بالاتر بوده است. در هر دو مرحله آموزش و آزمون مقادیر NRMSE و R2 بدست آمده از روش ANNs، در ایستگاه سینوپتیک قزوین برابر و به ترتیب برابر 11/0 و 97/0، و در ایستگاه کلیماتولوژی نیروگاه رجایی برابر و به­ترتیب برابر 10/0 و 97/0 می­باشد. به­طورکلی نتایج نشان داد که میانگین دمای هوای روزانه مهمترین پارامتر هواشناسی تأثیرگذار در برآورد ET0 می­باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluating Reference Evapotranspiration Using Data Mining Methods and Comparing it with the Results of Water Requirement System in Qazvin Province

نویسندگان [English]

  • A. Sedaghat 1
  • N.A. Ebrahimipak 2
  • A. Tafteh 2
  • S.N. Hosseini 2

1 Department of on Farm Water Management, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

2 Department of on Farm Water Management, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

چکیده [English]

Introduction
The accuracy of determining reference evapotranspiration (ET0) is an important factor in estimating agricultural and garden water requirements. The complexity of the evapotranspiration process and its dependence on meteorological data have made it difficult to accurately estimate this variable. Non-linearity, inherent uncertainty and the need for diverse climatic information in ET0 estimation have been the reasons that have made researchers interested in data mining methods such as artificial neural network (ANNs), random forest (RF) and support vector machine (SVM). Dos et al. (2020) evaluated the performance of machine learning methods to estimate daily ET0 with limited meteorological data. Their results showed that machine learning methods estimate ET0 with high accuracy, even in the absence of some variables. The use of artificial intelligence models in estimating ET0 with high accuracy has become popular in recent years, but the complexity of these models makes it difficult to apply them to regions with different climatic conditions) Feng and Tian, 2021.( Therefore, the aim of this study is to show that different data mining methods are suitable for daily ET0 estimation, which can reach a comprehensive and simple model with high accuracy by using minimal weather data.
Materials and Methods
In this research, the accuracy of data mining methods in estimating ET0 was evaluated in comparison with the plant water requirement system (FAO-Penman-Monteith standard method). For this purpose, data related to meteorological parameters such as sunshine hour, air temperature, wind speed, and relative humidity air were collected from ten synoptic stations and five climatology stations of Qazvin province in a period of 10 years (1389-1399). The ET0 extracted from the plant water requirement system was calculated based on the Penman-Moanteith method of FAO 56 and on a daily time scale, which is the actual value (measured) with the estimated values obtained by data mining methods (ANNs, RF and SVM) were evaluated. In order to validate the obtained results, the data of each station was divided into two sets of training (two-thirds of data) and testing (one-third of data). Finally, the generalizability of the mentioned methods in estimating ET0 was investigated based on NRMSE, R2, RMSE, MBE, EF and d Criteria.
Results and Discussion
The results showed that the ET0 values of the plant water requirement system have a good correlation with the estimated ET0 values of ANNs, RF, and SVM methods. In this research, the accuracy of the results of ANNs method was relatively higher than the other two methods. The results of statistical investigations and diagrams showed that ANNs, RF and SVM methods, considering all meteorological parameters (mean air temperature, average relative humidity, sunshine hours and wind speed) as input to the model, in Qazvin synoptic station with altitude 1279 meters and the climatology station of Rajaei power plant with a height of 1318 meters, estimated ET0 with higher accuracy in both training and testing steps.In the ANNs method, the values of NRMSE and R2 at Qazvin synoptic station in both training and testing steps are equal to 0.11 and 0.97, respectively, and at Rajaei Power Plant climatology station in both training and testing steps are equal to 0.10 and 0.97, respectively. In this research, the accuracy of estimating the value of ET0 in two ANNs and RF methods is close to each other and higher than the SVM method. On the other hand, the fitting speed of the ANNs method is very long compared to the RF method, and considering all aspects, it can be said that the RF method has a more suitable approach for estimating the ET0 value. The results of this research showed that the value of ET0 is not only based on air temperature, but may change under the influence of other factors such as air pollution, and is also strongly influenced by regional conditions such as topography and altitude.
Conclusion
The results of this research, in addition to better investigation of ET0, help to know more influential factors in each region and can be used in regions with similar climatic conditions. For example, in the current study area, it was found that the role of average air temperature is greater than other climatic parameters and has a greater impact on ET0. Therefore, it can be said that increasing the average daily air temperature will increase ET0 and subsequently increase the water requirement of plants. As a result, by using these methods and paying attention to these points, it is possible to avoid water stress and possible reduction of the production.

کلیدواژه‌ها [English]

  • Data mining
  • Reference evapotranspiration
  • Water requirement system
  1. Adab, H., Morbidelli, R., Saltalippi, C. Moradian, M.,& Ghalhari, G.A.F, )2020(. Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11): https://doi.org/10.3390/w12113223.
  2. Breiman, L. (2001). Random forests. Machine Learn. 45: 5–32.https://doi.org/10.1023/A:1010933404324.
  3. Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology 591: 125286. https://doi.org/10.1016/j.jhydrol.2020.125286.
  4. Dos Santos Farias, D.B., Althoff, D., Rodrigues, L.N., & Filgueiras, R. (2020). Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theoretical and Applied Climatology 142: 1481-1492. https://doi.org/10.1007/s00704-020-03380-4.
  5. Fazeli Khiavi, A., Salahi, B., & Goodarzi, M. (2020). Assessment effects of climate change on changes in potential evapotranspiration in the Moghan Plain by rcps. Watershed Engineering and Management 12: 977-993. (In Persian). https://doi.org/10.22092/ijwmse.2019.126245.1649.
  6. Feng, K., & Tian, J. (2021). Forecasting reference evapotranspiration using data mining and limited climatic data. European Journal of Remote Sensing 54: 363-371. https://doi.org/10.1080/22797254.2020.1801355.
  7. Ferreira, L.B., da Cunha, F.F., de Oliveira, R.A., & Fernandes Filho, E.I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology 572: 556-570. https://doi.org/10.1016/j.jhydrol.2019.03.028.
  8. Gavili, S., Sanikhani, H., Kisi, O., & Mahmoudi, M.H. (2018). Evaluation of several soft computing methods in monthly evapotranspiration modelling. Meteorological Applications 25: 128-138. https://doi.org/10.1002/met.1676.
  9. Gopinathan, K.K. (1988). A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy 41: 499-502. https://doi.org/10.1016/0038-092X(88)90052-7.
  10. Hagan, M.T., Demuth, H.B., & Beale, M.H. (1996). Neural Design PWS Publishing Co.
  11. Hocking, R.R. (2013). Methods and applications of linear models: regression and the analysis of variance, John Wiley & Sons.
  12. Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., & Chau, K.-W. (2019). Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics 13: 811-823. https://doi.org/10.1080/19942060.2019.1645045.
  13. Kang, T., Li, Z., & Gao, Y. (2021). Spatiotemporal variations of reference evapotranspiration and its determining Climatic factors in the Taihang Mountains, China. Water 13: 3145. https://doi.org/10.3390/w13213145.
  14. Karimipour, A., & Banitalebi, G. (2020). Sensitivity analysis of meteorological data in estimating reference evapotranspiration with the minimum data using wavelet-neuro-fuzzy, ANN and ANFIS models. Journal of Soil and Water Resources Conservation 9(3):47-72. (In Persian).
  15. Keikhosravi, G., Rezaee, A., Mohamadi, Z., & Baghaee, M. (2014). The Estimation of Reference Evapotranspiration in (reference grass) 5 synoptic Station province of Kermanshah with using REF-ET Model. National conference of new ideas in sustainable agriculture. Islamic Azad University, Borujerd branch 1-18, (In Persian).
  16. Majozi, N.P., Mannaerts, C.M., Ramoelo, A., Mathieu, R., & Verhoef, W. (2021). Uncertainty and sensitivity analysis of a remote-sensing-based penman–Monteith model to meteorological and land surface input variables. Remote Sensing 13: 882. https://doi.org/10.3390/rs13050882.
  17. Mattar, M.A., (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management 198: 28-38. https://doi.org/10.1016/j.agwat.2017.12.017.
  18. Monteith, J. (1965). The state andmovement of water in living organisms. In: 19th Symposia of the Society for Experimental Biology. Cambridge University Press, London 205–234.
  19. Ndiaye, P.M., Bodian, A., Diop, L., Deme, A., Dezetter, A., Djaman, K., & Ogilvie, A. (2020). Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data. Water 12: 1957. https://doi.org/10.3390/w12071957.
  20. Panaitescu, L., Ilie, C., Lungu, M., Popescu, M., Lungu, D., & Nita, S. (2014). Modern approach to the phenomenon of drought and aridity in Central and South Dobrudja. Journal of Environmental Protection and Ecology 15: 110-122.
  21. Picton, P. (2000). Neural Networks, 2nd edn. Palgrave, New York.
  22. Rai, R., Rajput, M., Agrawal, M., & Agrawal, S. (2011). Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. Journal of Scientific Research  55(771): 1.
  23. Raza, A., Shoaib, M., Khan, A., Baig, F., Faiz, M.A., & Khan, M.M. (2020). Application of non-conventional soft computing approaches for estimation of reference evapotranspiration in various climatic regions. Theoretical and Applied Climatology 139: 1459-1477. https://doi.org/10.1007/s00704-019-03007-3.
  24. Raziei, T., Daneshkar Arasteh, P., & Saghafian, B. (2005). Annual rainfall trend analysis in arid and semi-arid regions of central and eastern Iran. Water and Wastewater 54: 73-81 (In Persian).
  25. Saggi, M.K., & Jain, S. (2019). Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Computers and Electronics in Agriculture 156: 387-398. https://doi.org/10.1016/j.compag.2018.11.031.
  26. Shahryar, F., Gandomkar, A., & Hashempour, R. (2019). Optimal locating of the new towns in Qazvin Province based on climatic parameters. Geography and Environmental Planning 29: 19-34. (In Persian). https://doi.org/10.22108/gep.2018.98275.0.
  27. Shiri, J., Marti, P., Karimi, S., & Landeras, G. (2019). Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Computers and Electronics in Agriculture 162: 70-81. https://doi.org/10.1016/j.compag.2019.03.030.
  28. Singh, A., Haghverdi, A., Öztürk, H.S., & Durner, W. (2020). Developing pseudo continuous pedotransfer functions for international soils measured with the evaporation method and the HYPROP system: I. The soil water retention curve. Water 12: 3425. https://doi.org/10.3390/w12123425.
  29. Sandhu, R., & Irmak, S. (2020). Performance assessment of hybrid-maize model for rainfed, limited and full irrigation conditions. Agricultural Water Management 242: 106402. https://doi.org/10.1016/j.agwat.2020.106402.
  30. Tabari, H., Martinez, C., Ezani, A., & Hosseinzadeh Talaee, P. (2013). Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration. Irrigation science 31: 575-588. https://doi.org/10.1007/s00271-012-0332-6.
  31. Üneş, F., Kaya, Y.Z., & Mamak, M. (2020). Daily reference evapotranspiration prediction based on climatic conditions applying different data mining techniques and empirical equations. Theoretical and Applied Climatology 141: 763-773. https://doi.org/10.1007/s00704-020-03225-0.
  32. Vapnik, V.N. (2000). The nature of statistical learning theory, ser. Statistics for engineering and information science, Springer, New York, 21:1003–1008.
  33. Willmott, C.J., Robeson, S.M., & Matsuura, K. (2012). A refined index of model performance. International Journal of climatology 32: 2088-2094. https://doi.org/10.1002/joc.2419.
  34. Yang, L., Feng, Q., Li, C., Si, J., Wen, X., & Yin, Z. (2017). Detecting climate variability impacts on reference and actual evapotranspiration in the Taohe River Basin, NW China. Hydrology Research 48: 596-612. https://doi.org/10.2166/nh.2016.252.

 

 

 

CAPTCHA Image