دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم ومهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

مصرف کودهای شیمیایی نیتروژن­دار مشکلات عدیده‎ای همچون آلودگی آب‎های زیرزمینی، غنی شدن آب‎های سطحی و کاهش کیفیت گیاهان دارویی را به همراه دارد. در پژوهش حاضر، تأثیر هیومیک اسید نیتروژن‎دار شده یا نیتروهیومیک اسید (‏NHA‏) بر رشد و ترکیب عنصری گیاه مرزه و نیز هدررفت نیتروژن ‏بررسی شد. برای این منظور، ‏NHA‏ از واکنش نیتریک اسید با هیومیک اسید (‏HA‏) استخراج‎شده از لئوناردیت شرکت ‏گلسنگ کویر یزد تهیه شد و ویژگی‌های آن با استفاده از روش طیف‎سنجی مادون قرمز (FT-IR) و درصد نیتروژن آن به روش آنالیز ‏CHNS‏ تعیین گردید. سپس، یک آزمایش گلخانه‎ای با کشت گیاه مرزه در قالب طرح کاملاً تصادفی با 16 تیمار شامل شاهد (بدون مصرف اوره، ‏HA‏ و ‏NHA‏)، ‏اوره (‏U1‎، ‏U2‎‏ و ‏U3‎‏)، هیومیک اسید (‏HA1‎، ‏HA2‎‏ و ‏HA3‎‏)، اوره-هیومیک اسید (‏U1HA1‎، ‏U2HA2‎‏ و ‏U3HA3‎‏)، نیتروهیومیک ‏اسید (‏NHA1‎، ‏NHA2‎‏ وNHA3‎‏) و اوره-نیتروهیومیک اسید (‏U1NHA1‎، ‏U2NHA2‎‏ و ‏U3NHA3‎‏) در 3 تکرار انجام شد. سطوح تیمارها به میزان ‏‎ mg N kg-1‎‏40 برای سطح اول،‏‎ mg N kg-1‎‏ 80 برای سطح دوم و ‏‎ mg N kg-1‎‏120 برای سطح سوم تعیین ‏شد و در تیمارهای مخلوط، سهم برابری از نیتروژن برای اوره و ‏HA‏ و یا اوره و ‏NHA‏ در نظر گرفته شد. نتایج نشان داد که NHA نسبت به HA از اسیدیتی کل و نیز محتوای نیتروژن بیش‌تری برخوردار بود. به‌علاوه، اغلب صفات مورفولوژیک و فیزیولوژیک گیاه مرزه شامل سطح برگ، ارتفاع گیاه، طول ریشه، قطر ساقه، وزن تر و خشک بخش هوایی و ریشه و نیز شاخص کلروفیل، غلظت نیتروژن، فسفر، ‏پتاسیم، نیترات و آنزیم نیترات ردوکتاز در تیمارهای  NHAبه‎طور معناداری بیش‌تر از تیمارهای HA بودند. همچنین، بیش‌ترین وزن خشک بخش‌ هوایی در تیمارهای تلفیقی U3NHA3 و U3HA3 و تیمار U3 مشاهده شد. میانگین شدت افزایش غلظت نیترات بخش هوایی با افزایش سطح نیتروژن در تیمارهای اوره 77/1 برابر تیمارهای تلفیقی UNHA بود. نتایج نشان داد که آبشویی نیترات از خاک با کاربرد تیمار ‏U3NHA3‎‏ حدود 5/40 ‏درصد نسبت به تیمار U3 کاهش یافت. یافته‎های این پژوهش نشان داد‎‎ که کود تلفیقی ‏UNHA‏ می‎تواند به‌عنوان یک کود نیتروژن‌دار در افزایش عملکرد و شاخص‎های رشد گیاه دارویی مرزه مطرح گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Nitrohumic Acid Application on Some Morphological and Physiological Characteristics of Savory Plant (Satureja hortensis L.)

نویسندگان [English]

  • Mansour Mirzaei Varouei
  • Sh. Oustan
  • A. Reyhanitabar
  • N. Najafi

Department of Soil Science, Faculty of Agriculture, University of Tabriz , Tabriz, Iran

چکیده [English]

Introduction
Savory is considered one of the most important medicinal plants, which is used in various food and medical industries. Nitrogen (N) plays a major role on the growth and yield of medicinal plants. Therefore, an adequate supply of N is required for successful production of savory. However, the application of chemical N fertilizers is associated with many obstacles such as groundwater ‎pollution, N enrichment of surface waters, and drop in the quality of plants. ‎Accordingly, nowadays, great attention has been paid to organic fertilizers. In this regard, humic acid-based fertilizers have shown promising results. Humic acids (HAs) could be converted into nitrohumic acids (NHAs) through the nitration process, in which nitro groups (NO2) are located on the aromatic rings. This process increases the N content of the HA. Thus, ‎‎NHAs can be used as organic N fertilizers in the cultivation of medicinal plants whose organic production is a priority. However, the ‎effects of these types of fertilizers on plant growth and physiological characteristics have not been well ‎understood. Accordingly, the present study for the first time investigates the effectiveness of NHA on the ‎morphological and physiological characteristics of savory, as well as N loss through leaching.‎
Materials and Methods
In the current study, HA was initially extracted from leonardite (purchased from Yazd Golsang Kavir Company) as a rich source of HA. Then, NHA was prepared through the nitration process using nitric acid (50% by volume). After that, using FT-IR (Fourier transform infrared spectroscopy) and CHNS analysis the extracted HA and NHA were characterized, and their N content was determined. Afterward a ‎greenhouse experiment in a completely randomized design (CRD) with three replications was conducted ‎to determine the effects of 16 treatments, including control (without urea, HA and NHA), urea (U1, U2 and U3), humic acid ‎‎(HA1, HA2 and HA3), nitrohumic acid (NHA1, NHA2 and NHA3), urea-humic acid (U1HA1, U2HA2‎ and U3HA3), and urea-nitrohumic acid (U1NHA1, U2NHA2 and U3NHA3) on the morphological ‎and physiological characteristics of savory plant. The treatment levels were ‎determined as 40, 80, and 120 mg N kg-1 for the first, second and third level of the treatments, respectively. In the combined treatments of urea and HA or NHA, an equal fraction of the total nitrogen (N) was applied. At the end of the experiment, standard methods were used to assess various characteristics, including root length, leaf area, plant height, root volume, wet and dry weights of shoot and root, leaf chlorophyll index, concentrations of phosphorus, potassium, nitrogen, nitrate, and nitrate reductase in both the shoot and root. Additionally, leaching was conducted on specific days during the experiment, and the leachate was collected for nitrate measurement.
Results and Discussion
The results showed that using the nitration process, some characteristics of the NHA such as total acidity, the content of carboxylic and phenolic groups as well as N content improved as compared to the initial HA. Moreover, the results indicated that most of the morphological and physiological ‎traits of savory plants, including leaf area, plant height, root length, fresh and dry weights of root and shoot as well as chlorophyll index, and the concentration of nitrogen, phosphorous, potassium, nitrate and nitrate reductase enzyme were significantly higher in the NHA treatments than those of HA. In addition, the highest shoot dry weight was obtained in the combined treatments of U3NHA3 and U3HA3 as well as in the U3 treatment alone. The average rate of nitrate concentration increase in the U treatments was 1.77 times higher than the UNHA treatments. According to the results, U3 treatment indicated the highest nitrate loss which by using the U3NHA3 treatment, the mean concentration of nitrate ‎in the leachate decreased by about 40.5% as compared to the U3 treatment.‎
Conclusion
The findings of this research revealed that most of the morphological and physiological ‎traits of savory plant showed better responses to the combined treatments of U3NHA3 and U3HA3 as well as to the U3 treatment alone. However, with regard to the lower accumulation of nitrate in the shoot of savory as well as to the lower nitrate leaching, the combined treatments were preferred. Accordingly, NHA can be ‎a alternative nitrogen source in increasing the yield and growth indicators of savory. However, the reasons behind the fact of the better performance of combined nitrogen treatments than the individual ones require more research in the future.

کلیدواژه‌ها [English]

  • Combined treatment
  • Leonardite
  • Nitrate leaching
  • Nitrate reductase enzyme
  • Urea
  1. Akimbekov, N., Qiao, X., Digel, I., Abdieva, G., Ualieva, P., & Zhubanova, A. (2020). The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture,10(5), 147. https://doi.org/10.3390/agriculture10050147‎‎
  2. Alizadeh Sahzabi, A., Sharifi Ashorabadi, E., Shiranirad, A.H., & Abaszadeh, B. (2007). The effects of different methods and levels of using nitrogen on some quality and quantity characteristics of Satureja hortensis L. Iranian Journal of Medicinal and Aromatic Plants Research, 23(3), 416-431. (In Persian with English abstract)
  3. Allison, L.E., & Moodie, C.D. (1965). Carbonates. P. 1379-1396. Methods of soil analysis. Part2. Chemical and Microbiological Properties. American Society of Agronomy, Madison.
  4. Almendros, G., & Dorado, J. (1999). Molecular characteristics related to the biodegradability of humic acid preparations. European Journal of Soil Science50(2): 227-236. https://doi.org/10.1046/j.1365-2389.1999.00240.x‎
  5. Amini, B., Farahbakhsh, M., & Kianirad, M. (2018). Study on the effects of humic acid-urea fertilizers application on some agronomic characteristics of maize (Zea mays). Journal of Applied Soil Research, 5(2), 31-40. (In Persian with English abstract)
  6. Arvin, P. (2019). Study of different levels of nitrogen, phosphorus and potassium on physiological and morphological parameters and essential oils in savory plant (Satureja hortensis). Jounal of Plant Research, 32(2), 260-279. (In Persian with English abstract)
  7. Azeem, K., Shah, S., Ahmad, N., Shah, S.T., Khan, F., Arafat, Y., Naz, F., Azeem, I., & Ilyas, M. (2015). Physiological indices, biomass and economic yield of maize influenced by humic acid and nitrogen levels. Russian Agricultural Sciences,41(2), 115-119. https://doi.org/10.3103/S1068367415020020‎
  8. Azizi, E., Jannati, N., & Armin, M. (2020). The effect of different levels of humic acid on some morpho-physiological traits and essential oils of garden savory (Satureja hortensis) under vermicompost application. Journal of Plant Environmental Physiology, 15(59), 99-112. (In Persian with English abstract)
  9. Azizi, M., & Safaei, Z. (2017). The effect of foliar application of humic acid and nano fertilizer (Pharmks) on morphological traits, yield, essential oil content and yield of Black Cumin (Nigella sativa). Journal of Horticultural Science, 30(4), 671-680. (In Persian with English abstract)
  10. Black, A.S., & Waring, S.A. (1978). Nitrate determination in an oxisol using K2SO4 extraction and the nitrate-specific ion electrode. Plant and Soil,49(1), 207-211. https://doi.org/10.1007/BF02149924
  11. Boral, P., Varma, A.K., & Maity, S. (2021). Nitration of Jharia basin coals, India: a study of structural modifications by XRD and FTIR techniques. International Journal of Coal Science & Technology,8(5), 1034-1053. https://doi.org/10.1007/s40789-021-00422-8‎‎
  12. Cacco, G., Attinà, E., Gelsomino, A., & Sidari, M. (2000). Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science,163(3), 313-320. https://doi.org/10.1002/1522-2624(200006)163:3%3C313::AID-JPLN313%3E3.0.CO;2-U
  13. Cataldo, D.A., Maroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis,6(1), 71-80.
  14. Cazetta, J.O., & Villela, L.C.V. (2004). Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Scientia Agricola,61, 640-648. https://doi.org/10.1590/S0103-90162004000600012
  15. Chapman, H.D. (1965). Cation exchange capacity. P. 891-901. In: Black C.A. (eds) Methods of Soil Analysis. Soil Science Society of America, Madison.
  16. Cottenie, A. (1980). Soil and Plant Testing as a Basis of Fertilizer Recommendations.A.O. Soils Bulletin, Belgium.
  17. Da-Bing, X., Qiu-Jun, W., Yun-Cheng, W., Guang-Hui, Y., Qi-Rong, S., & Huang, Q. (2012). Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere,22(6), 815-824. https://doi.org/10.1016/S1002-0160(12)60067-8
  18. Dong, L., & Yuan, H. (2009). Nitrogen incorporation into lignite humic acids during microbial degradation. Geomicrobiology Journal,26(7), 484-490. https://doi.org/10.1080/01490450903061085
  19. El-Ghamry, A.M., Abd El-Hai, K.M., & Ghoneem, K.M. (2009). Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Australian Journal of Basic and Applied Sciences, 3(2), 731-739.
  20. Farahani, E., & Madani, H. (2014). Evaluate the usefulness of humic acid organic matter in comparison to chemical fertilizer and manure and their combination in summer savory (Satureja hortensis). New Finding in Agriculture, 8(4), 323-337. (In Persian with English abstract)
  21. Fatima, N., Jamal, A., Huang, Z., Liaquat, R., Ahmad, B., Haider, R., Ali, M.I., Shoukat. T., Alothman Z.A., Ouladsmane, M., Ali, T., Ali S., Akhtar, N., & Sillanpää, M. (2021). Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability,13(16), 8969. https://doi.org/10.3390/su13168969
  22. Ferrara, G., & Brunetti, G. (2010). Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera) cv Italia. Spanish Journal of Agricultural Research,8(3), 817-822. https://doi.org/10.5424/1283
  23. Gavlak, R., Horneck, D., Miller, R.O., & Kotuby-Amacher, J. (2003). Soil, plant and water reference methods for the western region. WCC-103 Publication, Fort Collins, CO.
  24. Gee, G.W., & Or, D. (2002). Particle size analysis. P. 255-293. In: Dane J.H., Topp G.C. (eds) Methods of Soil Analysis: Part 4. Physical Methods. Soil Science Society of America, Madison. https://doi.org/10.2136/sssabookser5.4.c12
  25. Gruandwald, J., & Buttle K. (1996). The European phytotherapeutics market. Drugs Made in Germany, 36, 6-11.
  26. Guha, T., Gopal, G., Mukherjee, A., & Kundu, R. (2022). Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environmental Pollution,292: 118301. https://doi.org/10.1016/j.envpol.2021.118301
  27. Haghighi, M., & Kafi, M. (2010). Effect of humic acid on the accumulation of cadmium, nitrate and changes of nitrate reductase activity in lettuce. Journal of Horticultural Science, 24(1), 53-58. (In Persian with English abstract)
  28. Hernandez, O.L., Calderín, A., Huelva, R., Martínez-Balmori, D., Guridi, F., Aguiar, N.O., Olivares, F.L., & Canellas, L.P. (2015). Humic substances from vermicompost enhance urban lettuce production. Agronomy for Sustainable Development, 35(1), 225-232. https://doi.org/10.1007/s13593-014-0221-x
  29. Huang, B., Liu, G., Wang, P., Zhao, X., & Xu, H. (2019). Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes, 7(3), 167. https://doi.org/10.3390/pr7030167
  30. Jones, J.B. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC press. New York.
  31. Ju, K.S., & Parales, R.E. (2010). Nitroaromatic compounds, from synthesis to biodegradation. Microbiology and Molecular Biology Reviews,74(2), 250-272. https://doi.org/10.1128/MMBR.00006-10
  32. Kalaichelvi, K., Chinnusamy, C., & Swaminathan, A.A. (2006). Exploiting the natural resource-lignite humic acid in agriculture-a review. Agricultural Reviews,27(4), 276-283.
  33. Karamian, Z., Nasirzadeh, A., & Mohseli, V. (2012). Effect of nitrogen on yield, essential oil and extract of savory plant. 12th Soil Science Congress, 3 September 2011. Iranian Soil Science Society, Tabriz, Iran. (In Persian)
  34. Keeney, D.R., & Nelson, D.W. (1982). Nitrogen: inorganic forms. P. 643-698. In: Page A.L., Miller R.H., Keeney D.R. (eds) Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. Soil Science Society of America, Madison.
  35. Khan, S.A., Khan, S.U., Qayyum, A., Gurmani, A.R., Khan, A., Khan, S.M., Ahmed, W., Mehmood, A., & Amin, A.Z. (2019). Integration of humic acid with nitrogen wields an auxiliary impact on physiological traits, growth and yield of maize (Zea mays L.) varieties. Applied Ecology and Environmental Research,17(3), 6783-6799. http://dx.doi.org/10.15666/aeer/1703_67836799
  36. Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods.  687-734. In: Klute A. (eds). Method of Soil Analysis: Part 1. Physical and Mineralogical Methods. Soil Science Society of America, Madison. https://doi.org/10.2136/sssabookser5.1.2ed.c28
  37. Kong, B., Wu, Q., Li, Y., Zhu, T., Ming, Y., Li, C., Wang, F., Jiao, Sh., Shi, L., & Dong, Z. (2022). The Application of Humic Acid Urea Improves Nitrogen Use Efficiency and Crop Yield by Reducing the Nitrogen Loss Compared with Urea. Agriculture, 12(12), 1996. https://doi.org/10.3390/agriculture12121996
  38. Kuo, S. (1996). Phosphorus. P. 869-919. In: Sparks D.L. Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds) Methods of Soil Analysis: Part 3. Chemical Methods. Soil Science Society of America, Madison.
  39. Li, X., She, D., Zhao, P., Jin, H., Jia, T., Zhou, H., & Zheng, J. (2022). Facile synthesis a potential nitrogen-enriched weathered coal fertilizer: excellent slow-release performance and improving plant quality. Waste and Biomass Valorization, 13(12), 4685-4700. https://doi.org/10.1007/s12649-022-01778-x
  40. Liang, X.Q., Xu, L., Li, H., He, M. M., Qian, Y.C., Liu, J., Nie, Z.Y., Ye, Y.S., & Chen, Y. (2011). Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Physics and Chemistry of the Earth, Parts A/B/C,36(9-11), 395-400. https://doi.org/10.1016/j.pce.2010.03.017
  41. Liang, Z.C., Cheng, S.X., & Wu, L. (1999). Study on mechanism of interaction between coal humic acid and urea. Journal of Fuel Chemistry and Technology, 27(2), 176-181.
  42. Luo, Y., Liang, J., Zeng, G., Chen, M., Mo, D., Li, G., & Zhang, D. (2018). Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Management,71, 109-114. https://doi.org/10.1016/ j.wasman.2017.09.023
  43. Makkizadeh, M., Chaichi, M., Nasrollahzadeh, S., & Khavazi, K., (2012). Effect of different types of nitrogen fertilizers on quantitative and qualitative characteristics of Satureja hortensis Iranian Journal of Medicinal and Aromatic Plants, 28(2), 330-341. (In Persian with English abstract).
  44. Malcolm, R.E., & Vaughan, D. (1979). Effects of humic acid fractions on invertase activities in plant tissues. Soil Biology and Biochemistry, 11(1), 65-72. https://doi.org/10.1016/0038-0717(79)90120-2
  45. Mariano, E., de Sant Ana Filho, C.R., Bortoletto-Santos, R., Bendassolli, J.A., & Trivelin, P.C. (2019). Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea. Atmospheric Environment203: 242-25. https://doi.org/10.1016/j.atmosenv.2019.02.003
  46. Mazumdar, B.K., Basu, S.K., & Kumar, S. (1988). Urea-coal acids combination fertiliser: some recent developments. Urja;(India)23(5).
  47. Mehdizadeh, L., Moghaddam, M., & Lakzian, A. (2020). Amelioration of soil properties, growth and leaf mineral elements of summer savory under salt stress and biochar application in alkaline soil. Scientia Horticulturae 267: 109319. https://doi.org/10.1016/j.scienta.2020.109319
  48. Mehta, P., & Srivastava, H.S. (1980). Comparative stability of ammonium-and nitrate-induced nitrate reductase activity in maize leaves. Phytochemistry,19(12), 2527-2530. https://doi.org/10.1016/S0031-9422(00)83912-6
  49. Najafi Vafa, Z., Sohrabi, Y., & Samir, Z. (2020). Humic acid and nano Zn chelated fertilizer regulates nutrient uptake and growth and production of summer savory. Journal of Biology and Nature, 5-15.
  50. Nasir, S., Sarfaraz, T.B., Verheyen, T.V., & Chaffee, A.L. (2011). Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Processing Technology,92(5), 983-991. https://doi.org/10.1016/j.fuproc.2010.12.020
  51. Naz, M.Y., & Sulaiman, S.A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. Journal of Controlled Release,225, 109-120. https://doi.org/10.1016/j.jconrel.2016.01.037
  52. Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. P. 961-1010. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds) Methods of Soil Analysis: Part 3. Chemical Methods. Soil Science Society of America, Madison. https://doi.org/10.2136/sssabookser5.3.c34
  53. Ozkan, S., & Ozkan, S.G. (2017). Investigation of humate extraction from lignites. International Journal of Coal Preparation and Utilization,37(6), 285-292. https://doi.org/10.1080/19392699.2016.1171761
  54. Pansu, M., & Gautheyrou, J. (2007). Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Science & Business Media.
  55. Patti, A.F., Verheyen, T.V., Douglas, L., & Wang, X. (1992). Nitrohumic acids from Victorian brown coal. Science of the Total Environment,113(1-2), 49-65. https://doi.org/10.1016/0048-9697(92)90016-L
  56. Piccolo, A., Nardi, S., & Concheri, G. (1992). Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology and Biochemistry,24(4), 373-380. https://doi.org/10.1016/0038-0717(92)90197-6
  57. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays). Journal of Experimental Botany,55(398), 803-813. https://doi.org/10.1093/jxb/erh085
  58. Raina, J.N., & Goswami, K.P. (1988). Effect of fulvic acid and fulvates on the growth and nutrient uptake by maize plant. Journal of the Indian Society of Soil Science,36, 264-268.
  59. Rietra, R.P., Heinen, M., Dimkpa, C.O., & Bindraban, P.S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis,48(16), 1895-1920. https://doi.org/10.1080/00103624.2017.1407429
  60. Riley, J.P., & Sinhaseni, P. (1957). The determination of ammonia and total ionic inorganic nitrogen in sea water. Journal of the Marine Biological Association of the United Kingdom,36(1), 161-168. https://doi.org/10.1017/S0025315400017161
  61. Rizk, F.A., Shaheen, A.M., Singer, S.M., & Sawan, O.A. (2013). The productivity of potato plants affected by urea fertilizer as foliar spraying and humic acid added with irrigation water. Middle East Journal of Agriculture Research, 2(2), 76-83.
  62. Sabouri, F., Sirousmehr, A., & Gorgini Shabankareh, H. (2018). Effect of irrigation regimes and application of humic acid on some morphological and physiological characteristics of savory (Satureja hortensis). Iranian Journal of Plant Biology, 9(4), 13-24. (In Persian with English abstract)
  63. Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D.R., Munroe, P., Taherymoosavi, S., & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment,701, 134424.
  64. Skubij, N., & Dzida, K. (2019). Influence of nitrogen dose and harvesting date on the yield and biological value of raw garden savory (Satureja hortensis) of Saturn cv. Acta Scientiarum Polonorum Hortorum Cultus, 18, 171-180. https://doi.org/10.1016/j.scitotenv.2019.134424
  65. Song, X., Guo, W., Xu, L., & Shi, L. (2022). Beneficial effect of humic acid urea on improving physiological characteristics and yield of maize (Zea mays). Acta Physiologiae Plantarum, 44(7), 1-11. https://doi.org/10.1007/s11738-022-03401-x
  66. Standard, A.S.T.M. (2011). Annual Book of ASTM Standards. Test Method for Ash in the Analysis Sample of Coal and Coke.
  67. Stewart, G.R., Lee, J.A., & Orebamjo, T.O. (1973). Nitrogen metabolism of halophytes II. Nitrate availability and utilization. New Phytologist,72(3), 539-546. https://doi.org/10.1111/j.1469-8137.1973.tb04405.x
  68. Swift, R.S. (1996). Organic matter characterization. 1011-1069. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds) Methods of Soil Analysis: Part 3. Chemical Methods. Soil Science Society of America, Madison. https://doi.org/10.2136/sssabookser5.3.c35
  69. Syahren, A.M., & Wong, N.C. (2008). Extraction and chemical characteristics of nitro-humic acids from coals and composts. Journal of Tropical Agriculture and Food Science,36(2), 269-279.
  70. Taghavi, T.S., & Babalar, M. (2007). The effect of nitrate and plant size on nitrate uptake and in vitro nitrate reductase activity in strawberry (Fragaria × ananassa Selva). Scientia Horticulturae,112(4), 393-398. https://doi.org/10.1016/j.scienta.2007.01.002
  71. Thorn, K.A., & Cox, L.G. (2016). Nitrosation and nitration of fulvic acid, peat and coal with nitric acid. Plos One,11(5), e0154981. https://doi.org/10.1371/journal.pone.0154981
  72. Tomasi, N., Monte, R., Rizzardo, C., Venuti, S., Zamboni, A., Cesco, S., Pinton, R., & Varanini, Z. (2009). Effects of water-extratable humic substances on molecular physiology of nitrate uptake in two maize inbred lines with different nitrogen use efficiency. The Proceedings of the International Plant Nutrition Colloquium XVI. Department of Plant Sciences, University of California, Davis, CA.
  73. Trenkel, T. (2021). Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture. International Fertilizer Industry Association (IFA).
  74. Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management,27(2), 205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
  75. Vendrell, P.F., & Zupancic, J. (1990). Determination of soil nitrate by transnitration of salicylic acid. Communications in Soil Science and Plant Analysis,21(13-16), 1705-1713. https://doi.org/10.1080/00103629009368334
  76. Wallinga, I., Van Vark, W., Houba, V.J.G., & Van der Lee, J.J. (1989). Soil and plant analysis, series of syllabi part 7, Plant analysis procedure. Wageningen Agriculture University, Wageningen.
  77. Wang, D., Chen, X., Tang, Z., Liu, M., Jin, R., Zhang, A., & Zhao, P. (2022). Application of humic acid compound fertilizer for increasing sweet potato yield and improving the soil fertility. Journal of Plant Nutrition, 45(13), 1933-1941. https://doi.org/10.1080/01904167.2022.2046064
  78. Westerman, R.L. (1990). Soil testing and plant analysis. 3rd editio. Soil Science Society of America, https://doi.org/10.1080/01904167.2022.2046064
  79. Yadegari, M. (2022). Effects of NPK, botamisol, and humic acid on morphophysiological traits and essential oil of three Satureja species under drought stress. Iranian Journal of Medicinal and Aromatic Plants Research, 38(1), 61-80. (In Persian with English abstract)
  80. Yan, L., Ya-fu, T., Yue-chao, Y., Yuan-mao, J., & Dong-dong, CH. (2022). Effects of large-grained activated humic acid fertilizer on soil aggregates and organic carbon in apple orchard soil. Yingyong Shengtai Xuebao,33(4), https://doi.org/10.13287/j.1001-9332.202204.012
  81. Zare, SH., Sirousmehr, A., Ghanbari, A., & Tabatabaei, S.J. (2013). The effect of different rates of municipal compost and n fertilizer on the essential oil and some vegetative characteristics of summer savoury (Satureja hortensis). Iranian Journal of Field Crops Reseach, 11(1), 191-199. (In Persian with English abstract) https://doi.org/10.22067/GSC.V11I1.24129
  82. Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A., & Feizian, M. (2022). The effect of humic acid on germination indices and some growth traits of Khuzestani savory (Satureja khuzistanica, Jamzad) Andimeshk's ecotype under salinity stress. Seed Science and Technology, 10(4), 149-161. (In Persian with English abstract)
  83. Zhang, S.Q., Liang, Y., Wei, L., Lin, Z., Li, Y.T., Hu, S.W., & Zhao, B.Q. (2019). Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen. Journal of Integrative Agriculture,18(3), 656-666. https://doi.org/10.1016/S2095-3119(18)61950-1

 

CAPTCHA Image