دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زابل

2 دانشگاه فردوسی مشهد

3 دانشگاه شیراز

چکیده

مدل سازی جریان رودخانه در برنامه ریزی و مدیریت منابع آب از اهمیت ویژه ای برخوردار است. با این وجود، ایجاد داده هایی که بتواند شباهت زیادی با داده های حقیقی داشته باشد، به دلیل اندک بودن داده های جریان رودخانه و وابستگی و همبستگی ماهانه و سالانه آنها، کاری مشکل و پیچیده است. در این مطالعه از آمار 50 ساله و دو روش خودرگرسیون میانگین متحرک فصلی و کاپیولاهای فرانک و کلیتون که به ترتیب روش های پیش بینی و شبیه سازی در مدل سازی جریان رودخانه هستند، برای ایجاد داده-های جریان رودخانه هیرمند استفاده شد. نتایج نشان داد، داده های بازسازی‌شده در روش خودرگرسیون میانگین متحرک مقادیر کم جریان رودخانه را به خوبی پیش بینی می کنند، ولی از همبستگی داده های تاریخی برخوردار نبوده و حداکثر جریان رودخانه را کمتر از حد واقعی نشان می دهند. از طرف دیگر، کاپیولا همبستگی داده های جریان رودخانه را حفظ کرده و مقادیری مشابه داده های واقعی ایجاد می کند. لذا، پیشنهاد می شود از روش کاپیولا برای مدل سازی داده های تصادفی جریان رودخانه هیرمند استفاده شود. به علاوه استفاده از این روش برای شبیه سازی جریان سایر رودخانه ها توصیه می شود. همچنین کاربرد انواع روش های کاپیولا برای مدل سازی جریان رودخانه می تواند موضوع تحقیقات آتی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Helmand River Flow Modeling Using Copula and Seasonal Auto Regressive Moving Average

نویسندگان [English]

  • A.A. Keikha 1
  • M. Mosannan Mozafari 2
  • M. Sabouhi 2
  • Gh. Soltani 3

1 University of Zabol

2 Ferdowsi University of Mashhad

3 University of Shiraz

چکیده [English]

River flow modeling has special importance in water resources management. Since the actual river flow data are often low and they correlate and depend yearly and monthly, making the data similar to historical data is so difficult and complex. In this study, 50 year data and Seasonal Auto Regressive Moving Average (SARMA) and Clayton and Frank Copulas which are the prediction and simulation methods of the river flow molding, were used to generate random flow data of Helmand River. Results show, SARMA model forecasts minimum river flow data very good, but the generated data hasn’t correlation of historical data and usually the maximum river flow is greater than real data. Otherwise, Copula preserved concordance of real data and make the data that are similar to real river flow. Therefore it is proposed that Copula is used for Helmand river flow modeling. Also this method use for simulating other river flows and also using other Copulas for river flow modeling could have the subject of future researches.

کلیدواژه‌ها [English]

  • simulation
  • prediction
  • water resources management
  • Correlation
1- ابریشمی ح. 1383. مبانی اقتصادسنجی (ترجمه). چاپ سوم، انتشارات دانشگاه تهران، صفحات 907 تا 925.
2- خلقی اشکلک م. 1386. اندازه‌گیری میزان رادون و رادیوم آب منطقه سیستان. پایان‌نامه کارشناسی ارشد. گروه فیزیک. دانشکده علوم دانشگاه پیام نور، واحد مشهد.
3- دلیری ف.، و خلقی م. 1388. اصلاح روش IUDRN به منظور شبیه‌سازی استوکاستیکی دبی سالانه رودخانه ها (مطالعه موردی: رودخانه اریه استان خراسان رضوی). علوم و مهندسی آبخیزداری ایران. 3 (6)، 1-8.
4- اندرس و. 1386. اقتصادسنجی سری های زمانی با رویکرد کاربردی (صادقی م.، و شوال پور س.). چاپ اول، انتشارات دانشگاه امام صادق، 526 ص.
5- طرازکار م.، و صدق آمیز ع. 1387. مقایسه پیش بینی دبی جریان ماهانه رودخانه کرخه با استفاده از روش های سری زمانی و هوش مصنوعی. پژوهش و سازندگی در منابع طبیعی. 80، 51-58.
6- نوفرستی م. 1378. ریشه واحد و همجمعی در اقتصادسنجی. چاپ اول، موسسه خدمات فرهنگی رسا، 183 ص.
7- وزارت نیرو. 1390. گزارش برنامه‌ریزی منابع آب رودخانه و مخازن چاه نیمه‌های سیستان. جلد دوم. شرکت سهامی آب منطقه ای استان سیستان و بلوچستان، زابل.
8- Dogan I., Toluk T., and Sandalci M. 2007. Daily stream flow forecasting using artificial neural networks, International Congress River Flood Management, 448-459.
9- Favre A.C., El Adlouni S., Perreault L., Thiemonge N., and Bobee B. 2004. Multivariate hydrological ferequency analysis using copulas, Water Resource Research, 40:1-12.
10- Genest C., and Mackay L. 1986. The joy of copulas: Bivariate distributions with uniform marginals, The American Statistician, 40 (4), 280–283.
11- Hardaker J.B., Hurine R.B.M., Anderson J. R., and Lein G. 2004. Coping with Risk in Agriculture. 2nd den, CABI, Wallingford, Oxford, U.K.
12- Hope A., and Bart R. 2012. Evaluation of a regionalization approach for daily flow duration curves in central and southern California watersheds, Journal of the American Water Resources Association (JAWRA), 48(1): 123-133.
13- http://www.vosesoftware.com/index.php
14- Kao S.C., and Govindaraju R.S. 2010. A copula-based joint deficit index for droughts, Journal of Hydrology, 380: 121–134.
15- Kehkha A,A. 2005. Modeling water resources management in the Sistan region of Iran, Thesis for the degree of Doctor of Philosophy, University of New England.
16- Remillard B., Papageorgiou N., and Soustra F. 2012. Copula-based semi parametric models for multivariate time series, Journal of Multivariate Analysis, 110:30-42.
17- Renard B., and Lang M. 2007. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology, Advances in Water Resources, 30: 897–912.
18- Van der Lee J.J. 2002. A decision support framework for participative and integrated river basin management: an application of the triple bottom line, Ph.D. thesis, University of New England, Australia.
19- Wang W. 2005. Testing and modeling autoregressive conditional heteroskedasticity of stream flow process, Nonlinear processes in Geophysics, 12: 55-66.
20- Zhang L., and Singh V.P. 2007. Bivariate rainfall frequency distributions using Archimedean copulas, Journal of Hydrology, 332, 93–109
CAPTCHA Image