Document Type : Research Article
Authors
1 University of Tabriz
2 University of Birjand
Abstract
Introduction: Hydrology cycle of river basins and water resources availability in arid and semi-arid regions are highly affected by climate changes, so that recently the increase of temperature due to the increase of greenhouse gases have led to anomaly in the Earth’ climate system. At present, General Circulation Models (GCMs) are the most frequently used models for projection of different climatic change scenarios. Up to now, IPCC has released four different versions of GCM models, including First Assessment Report models (FAR) in 1990, Second Assessment Report models (SAR) in 1996, Third Assessment Report models (TAR) in 2001 and Fourth Assessment Report models (AR4) in 2007. In 2011, new generation of GCM, known as phase five of the Coupled Model Intercomparison Project (CMIP5) released which it has been actively participated in the preparation of Intergovernmental Panel on Climate Change (IPCC) fifth Assessment report (AR5). A set of experiments such as simulations of 20th and projections of 21st century climate under the new emission scenarios (so called Representative Concentration Pathways (RCPs)) are included in CMIP5. Iran is a country that located in arid and semi-arid climates mostly characterized by low rainfall and high temperature. Anomalies in precipitation and temperature in Iran play a significant role in this agricultural and quickly developing country. Growing population, extensive urbanization and rapid economic development shows that Iran faces intensive challenges in available water resources at present and especially in the future. The first purpose of this study is to analyze the seasonal trends of future climate components over the Kashafrood Watershed Basin (KWB) located in the northeastern part of Iran and in the Khorsan-e Razavi province using fifth report of Intergovernmental Panel on climate change (IPCC) under new emission scenarios with Mann-Kendall (MK) test. Mann-Kendall is one of the most commonly used nonparametric tests to detect climatic changes in time series and trend analysis. The second purpose of this study is to compare CMIP5 models with each other and determine the changes in rainfall and temperature in the future periods in compare with base period on seasonal scale in all parts of this basin.
Materials and Methods: In this research, keeping in view the importance of precipitation and temperature parameters, fourteen models obtained from the General Circulation Models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. In historical time (1992-2005), simulated data of these models were compared with observed data (34 rainfall and 12 temperature stations) using four evaluation criteria for goodness-of-fit including Nash-Sutcliffe (NS), Percent of Bias (PBIAS), coefficient of determination (R2) and the ratio of the root mean square error to the standard deviation of measured data (RSR). Furthermore, all models have a very good rating performance for all of the evaluation criteria and therefore investigation is done for precipitation data as an important component in survey of climate subject to select the optimum models in kashafrood watershed basin.
Results and Discussion: By comparing four evaluation criteria for fourteen models of CMIP5 during historical time, finally, four climate models, including GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM and NorESM1-M which indicated more agreement with observed data according to the evaluation criteria were selected. Furthermore, four Representative Concentration Pathways (RCPs) of new emission scenario, namely RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were extracted, interpolated and then under three future periods, including near-century (2006-2037), mid-century (2037-2070) and late-century (2070-2100) were investigated and compered.
Conclusions: The results of Mann-Kendall test which was applied to examine the trend, revealed that the precipitation have variable positive and negative trends which were statistically significant. In addition, mean temperature have a significant positive trend with 90, 99 and 99.9% confidence level. In seasonal scale, survey of climatic variable (rainfall and mean temperature) showed that the maximum and minimum of precipitations occur during spring and summer and mean temperature in all seasons is higher than historical baseline, respectively. Maximum and minimum of mean temperature occur in summer and winter, and the amount of seasonal precipitation in these seasons will be reduced. Finally, across all parts of kashafrood watershed basin, rainfall and mean temperature will be reduced and increased, respectively. In conclusion, models of CMIP5 can simulate the future climate change in this region and four models of CMIP5 can be used for this region.
Keywords
Send comment about this article