دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

ویژگی‌های مغناطیسی خاک‌ بازتابی از برهمکنش‌های پیچیده شیمیایی، زمین‌شناسی و زیستی موجود در آن می‌باشد. بنابراین، آگاهی از عوامل موثر بر پذیرفتاری مغناطیسی خاک به درک و تفسیر هرچه بهتر نتایج کمک می‌کند. هدف از انجام این مطالعه، بررسی اثر کاربری‌های مختلف و نوع پوشش گیاهی بر میزان پذیرفتاری مغناطیسی در خاک‌های سطحی و ارتباط بین مقادیر آنها با ویژگی‌های خاک بود. چهار نوع کاربری شامل زراعی، مرتع پوشش‌دار، مرتع تخریب‌شده و دیم‌رهاشده در منطقه مطالعاتی انتخاب شد که دارای شرایط اقلیمی، توپوگرافی و مواد مادری مشابه و تا حد امکان نزدیک به یکدیگر بودند. در مجموع 60 نمونه مرکب خاک سطحی (15-0 سانتی‌متر) برداشت گردید. میانگین میزان lfᵡ در نمونه‌های خاک سطحی m3 kg-110-8× 8/695 محاسبه گردید. تجزیه و تحلیل‌ آماری نتایج حاکی از وجود تفاوت معنی‌دار در سطح احتمال 5 درصد بین میانگین مقادیر lfᵡ در کاربری‌های مختلف بود. مقدار میانگین lfᵡ اندازه گیری شده به ترتیب در مرتع با پوشش مناسب، مرتع تخریب‌شده، دیم رهاشده و زراعی کاهش یافت. مقادیر محاسبه شده fdᵡ در محدوده (73/1-52/0 %) نشان‌دهنده حضور ذرات چند حوزه‌ای به ارث رسیده از مواد‌ مادری آذرین به عنوان منشاء اصلی پذیرفتاری مغناطیسی در منطقه مطالعاتی بود. تغییرات اکثر ویژگی‌های اندازه‌گیری شده خاک در کاربری‌های مختلف از لحاظ آماری معنی-دار گردید. همبستگی مثبت و معنی‌داری بین داده‌های پذیرفتاری مغناطیسی و درصد شن وجود داشت. در حالی که میان داده‌های پذیرفتاری مغناطیسی، سیلت و کربنات‌کلسیم همبستگی منفی و معنی‌دار مشاهده گردید. نتایج نشان داد که نوع کاربری و پوشش‌گیاهی با تاثیر بر ویژگی‌ها و فرآیندهای تشکیل خاک، می‌تواند تشکیل و تجمع کانی‌های مغناطیسی خاک را تحت تاثیر قرار دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Magnetic Susceptibility Related to Soil Properties in Different Land Uses of Bardsir Region, Kerman Province

نویسندگان [English]

  • Sahar Taghdis
  • Mohammad Hady Farpoor

Shahid Bahonar University of Kerman

چکیده [English]

Introduction: Soil magnetic properties reflect the complex chemical, geological and biological interactions occur in the soil. Thus, knowledge about the factors affecting soil magnetic properties helps better understanding and interpreting the results.. The lithogenic magnetic minerals are often found in the coarse soil fractions (sand and silt) and they have inherited from parent rocks. Weathering and soil formation factors may lead increasing or decreasing of magnetic susceptibility. Climate and vegetation type are among the other factors affecting magnetic susceptibility too. Amount and distribution of magnetic susceptibility may also be affected by land use. The main objective of this research was to study the effect of different land uses and vegetation types on the magnetic susceptibility of topsoil related to soil properties.
Materials and methods: The study area was located in MahoonakeZiba around the Bardsir region, Kerman Province. The moisture and temperature regimes of the study area were sub aridic and mesic, respectively. The study area is located in the alluvial plain with igneous parent material originated from andesite, volcanic tuff, anddacite. Four land uses including farmland, well-covered pasture, disturbed pasture and degraded dryland farm with similar climate, topography, and parent material were selected. Overall, 60 complex surface samples were collected from the depth of 0-15 cm. The physicochemical analyses were done on the samples after that the soils were air dried, crushed, and passed through a 2 mm sieve. The soils magnetic susceptibility (ᵡ) in low (0.46 kHz) and high (4.6 kHz) frequencies were measured using the Bartington MS2 dual frequency sensor in two replications. The frequency depended magnetic susceptibility (ᵡfd %) was calculated as a development index of soil forming factors reflecting ferrimagnetic particle sizes.
Results and discussion: The pH of studied soils were in the range of neutral to alkaline and had the lowest coefficient of variance between measured parameters. The average of soil EC was 1.76 dS/m with a high coefficient of variance. The lowest amount of organic matter was in land use ofdegraded drylandfarm (0.26 %) and the highest was in farmland (2.15 %). The lowest amount of calcium carbonate with the coefficient of variance 12.37 % measured in the degraded pasture and its maximum was in the farmland. The loamy sand and sandy loam textural classes were found in the area under study. The minimum and maximum amounts ofᵡlf were determined in farmland (134.8× 10-8 m3 kg-1)and well-coveredpasture (1778.9 ×10-8 m3 kg-1 ), respectively and the relatively high mean value was 695.83 × 10-8 m3 kg-1. The topsoil of the study area was formed on alluvial deposits with a parent material originated from igneous andesite, tuff and dacite rocks. The high values of magnetic susceptibility of all soils under study could be attributed to the existence of initial magnetic minerals inherited from the parent material. The statistical analysis revealed a significant difference among ᵡlf values (p

کلیدواژه‌ها [English]

  • Central Iran
  • Magnetic parameters
  • Farmland
  • Pasture Soil magnetism
1- Afshari A., Khademi H., and Ayoubi S.H. 2015. Lithological and anthropogenic factors affecting magnetic properties of calcareous soils in Zanjan. Journal of Water and Soil Conservation, 22(3): 73-88. (in Persian with English abstract)
2- Alekseev A., Alekseeva T., Sokolowska Z., and Hajnos M. 2002. Magnetic and mineralogical properties of different granulometric fractions in the soils of the Lublin Upland Region. International Agrophysics. 16 (1): 1–6.
3- Armstrong A., Quinton J., and Maher B. 2012. Thermal enhancement of natural magnetism as a tool for tracing eroded soil. Earth Surf. Process. Landforms, 37,14e20.
4- Banaie M.H. 2001. Map of Iran soils moisture and temperature regimes. Soil and Water research institute. Tehran. Iran.
5- Blundell A., Dearing J.A., Boyle J.F., and Hannam J.A. 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Science. Review, 95: 158–188.
6- Camargo L.A., Júnior J.M., Pereira G.T., and Bahia, A.S.R.D.S. 2014. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces. Science Agriculture. 71 (3),244–256.
7- Climate-data for cities worldwide. 2012. www.climate-data.org.
8- Dankoub Z., Ayoubi S., Khademi H., and Sheng-Gao L.U. 2012. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use. Pedosphere, 22: 33-47.
9- De Jong E., Kozak L.M., and Rostad H.P.W. 2000. Effects of parent material and climate on the magnetic susceptibility of Saskatchewan soils. Canadian journal of soil science. 80(1): 135-142.
10- De Jong E., Pennock D.J., Nestor P.A.2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan, Canada. Catena, 40 (3): 291–305.
11- Dearing J. 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Chi Publishing, Keniloworth, England.
12- Dearing J.A., Hay K.L., Balsan S.M.J., Huddleston A.S., Wellington E.M.H., and Loveland P.J. 1996. Magnetic susceptibility of soil: An evaluation of contributing theories using a national data set. Journal of International Geophysics, 127: 728-734.
13- Dickinson C.H. 1974. Decomposition of litter in soil, in Biology of Plant Litter Decomposition (eds. Dickinson C. H., Pugh, G. J. F.), London: Academic Press, 633-658.
14- Dunlop D. J. 1981. The rock magnetism of fine particles, Physics of the Earth and Planetary Interiors, 26: 1-26.
15- Evans M.E., and McElhinny M.W. 1969. Investigation of the origin of stable remanence in magnetite-bearing igneous rocks. Journal of Geomagnetism and Geoelectricity, 21: 757-773.
16- Fassbinder J.W.E., Gorka T. 2009. Beneath the desert soil - archaeological prospecting with caesium magnetometer. In: Reindel, M., Wagner, G.A. (Eds.), New Technologies for Archaeology. Multidisciplinary Investigations in Palpa and Nasca, Peru. Springer Verlag, Berlin-Heidelberg, pp: 49-69.
17- Fine P., Singer M.J., La Ven R., Verosub K., and Southard R.J. 1989. Role of pedogenesis in distribution of magnetic susceptibility in two California chronosequences. Geoderma, 44:287–306.
18- Gee G.W. 2002. Particle size analysis. In: Jacobe H. D., and Clarke GT(ed), Metohds of Soil Analysis. Part 4. Physical Methods. SSSA. Madison, WI. Pp: 201-214.
19- Geological survey and mineral exploration of Iran. 1995. Chahargonbad map 1:100000. Tehran map publication.
20- Hosseini S.S., Esfandiarpour Boroujeni I., Farpoor M.H., and Karimi A.R. 2015. Comparison of different soil development indices along Kerman-Baft transect. Journal of Soil Management and Sustainable Production, 5(2): 1-22. (in Persian with English abstract)
21- Hussain I., Olson K.R., and Jones R.L. 1998. Erosion patterns on cultivated and uncultivated hill slopes determined by soil fly ash contents. Soil Science, 163(9): 726-738.
22- Jordanova N.2017. Soil magnetism. Application in pedology, environmental science and agriculture. ISBN: 978-0-12-809239-2. 450p
23- Karimi A., Haghnia G.H., Ayoubi Sh., Safari, T. 2017. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. Journal of Applied Geophysics, 138: 127-134.
24- Lü H., Liu D., Liu T. 2001. The effect of C3 and C4 plants for the magnetic susceptibility signal in soils. Sci. China Ser. D Earth Sci, 44 (4): 318–325.
25- Lu S. 2000. Lithological factors affecting magnetic susceptibility of subtropical soils, Zhejiang Province, China. Catena, 40 (4): 359–373.
26- Lu S.G., Chen D.J., Wang S.Y., and Liu Y.D. 2012a. Rock magnetism investigation of highly magnetic soil developed on calcareous rock in Yun-Gui Plateau, China: evidence for pedogenic magnetic minerals. Journal of Applied Geophysics, 77: 39–50.
27- Lu S.G., Zhu L., and Yu J.Y. 2012b. Mineral magnetic properties of Chinese paddy soils and its pedogenic implications. Catena, 93: 9–17.
28- Magiera T., Strzyszcz Z., Kapicka A., and Petrovsky E. 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130 (3): 299–311.
29- Marwick B. 2005. Element concentrations and magnetic susceptibility of Anthrosols: indicators of prehistoric human occupation in the inland Pilbara, Western Australia. Journal of Archaeology Science, 32: 1357-1368.
30- Michel F.M., Barron V., Torrent J., Morales M.P., Serna C.J., Boily J.F., Liu Q., Ambrosini A., Cismasu A.C., and Brown Jr., G.E. 2010. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci, 107 (7): 2787–2792.
31- Mokhtari Karchegani P., Ayoubi S., Lu S.G., and Honarju N. 2011. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. Journal of Applied Geophysics, 75: 227–236.
32- Mullins, C. E. 1977. Magnetic susceptibility of the soil and its significance in soil science – a review. Journal of Soil Science, 28: 223–246.
33- Nafeh M.H., and Brussed M.K. 1985. Electricity and Magnetism. John Wiley Sons, Inc.
34- Nelson R.E.1982. Carbonate and gypsum. In: Page, A.L. (Ed.), Methods of Soil Analysis. Agron. Monger. vol. 9. ASA and SSSA, Madison, WI, pp. 181–196.
35- Oades J. M., and Townsend W. N. 1963. The detection of ferromagnetic minerals in soils and clays. Journal of Soil Science, 14: 179–187.
36- Owliaie H., Adhami E., Chakerhosseini M., Rajaee M., and Kasraian A. 2009. Evaluation of magnetic susceptibility source using CBD treatment and micro CT-scan images in some soils of Fars Province. Journal of Water and Soil Science, 12 (46): 773–788.
37- Owliaie H.R., and Enjavinejad M. 2016. Soil Magnetism. Agricultural education and research publication. P280. (in Persian)
38- Page A.L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, Second edition. Part2: Chemical and Biological Properties. Soil Sci. Soc. AM. J. Inc. Publisher.
39- Sadiki A., Faleh A., Navas A., and Bouhlassa S. 2009. Using magnetic susceptibility toassess soil degradation in the Eastern Rif, Morocco. Earth Surf. Process. Landforms, 34: 2057–2069.
40- Sarmast M., Farpoor M.H., and Esfandiarpour I. 2017. Magnetic susceptibility of soils along a lithotoposequence in southeast Iran. Catena, 156: 252-262.
41- Schaetzl R., Anderson A. 2009. Soils Genesis and Geomorphology. Cambridge University Press, UK, ISBN. 978-0-521-81201-6.
42- Schwertmann U., and Taylor R.M. 1989. Iron oxides. P. 379-438. In: Dixon, J.B. and S.B. Weed, (eds.), Minerals in soil environment. Soil Science Society of America, Madison, USA.
43- Stanjek H., Fassbinder J. W. E., Vali H., Wägele H. and Graf W. 1994. Evidence of biogenic greigite (ferrimagnetic Fe3 S4). in soil. Eur. J. Soil Sci, 45: 97–103.
44- Su P., Xie T.T., and Zhou Z. 2011. C4 plant species and geographical distribution in relation to climate in the desert vegetation of China. Sciences in Cold and Arid Regions, 3(5): 0381–0391.
45- Szuszkiewicz M., Łukasik A., Magiera T., Mendakiewicz M. 2016. Combination of geo-pedo- and technogenic magnetic and geochemical signals in soil profiles - diversification and its interpretation: a new approach. Environmental Pollutant, 214: 464–477.
46- Tucker P.M. 1952. High magnetic effect of lateritic soil in Cuba. Geophysics. 17:753-775.
47- Vafaiezadeh R., Ayoubi SH., Mosadeghi M.R., and Yousefifard M. 2016. Slope and Land Use Changing Effects on Soil Properties and Magnetic Susceptibility in Hilly Lands, Yasouj Region. Journal of Water and Soil, 30 (2): 632-642. (in Persian with English abstract)
48- Walkey A., and Black I. A. 1934. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37: 29-38.
49- Xia D., Jin M., Liu X., Chen F., Ma J., Zhao H., Wang X., and Wei H. 2007. A preliminary study on the magnetic signatures of modern soil in Central Asia. Front. Earth Sci. 1 (3): 275–283.
50- Yang P., Mao R., and Shao H. 2009. An investigation on magnetic susceptibility of hazardous saline-alkaline soils from the contaminated Hai River Basin, China. Journal of Hazardous. Materials, 172: 494-497.
51- Yin L. J., Li M. R. 1997. A study on the geographic distribution and ecology of C4 plant in China, Acta Ecological Sinica (In Chinese with English abstract),17: 350-363.
CAPTCHA Image