پیامد نظام‌های کشت بر شاخص پایداری و کربن آلی خاکدانه‌ها در خاک‌های با سابقه بلندمدت کشت نیشکر

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

این مطالعه با هدف بررسی اثرات سیستم­های مختلف کشت نیشکر بر برخی خصوصیات فیزیکوشیمیایی-بیولوژیکی خاک و شاخص­های پایداری خاکدانه­ها در بخشی از اراضی استان خوزستان انجام گرفت. بدین منظور، اثرات روش کاشت نیشکر (یک ردیفه و دو ردیفه)، و سن گیاه (یکساله و چند ساله) بر برخی خصوصیات فیزیکوشیمیایی خاک و مقدار پایداری خاکدانه خاک سطحی (30-0 سانتی‌متر) در مزارع نیشکر هفت تپه، که به‌مدت طولانی از ابتدای تأسیس مجتمع تحت کشت بوده­اند، مورد بررسی قرار گرفت. در نمونه‌های خاک، مقادیر کربن آلی، کربن فعال، تنفس پایه، تنفس برانگیخته، میانگین وزنی قطر خاکدانه­ها (MWD)، میانگین هندسی قطر خاکدانه­ها (GMD)، درصد خاکدانه­های پایدار و کربن خاکدانه­ای اندازه­گیری شد. نتایج نشان داد، کشت دوردیفه باز-رویش و زمین کشت­نشده به‌ترتیب حاوی بیشترین (95/0 درصد) و کمترین (21/0 درصد) میزان کربن آلی خاک بودند و میزان کربن آلی به‌طور معنی‌دار در کشت­های دوردیفه نخستین باز-رویش و تازه­کشت، بیشتر از سایر کشت­ها بود. مقدار تنفس پایه در کشت یک­ردیفه سومین باز-رویش و تنفس برانگیخته در کشت دو ردیفه تازه­کشت، به شکل معنی­داری بیشتر از سایر کشت­ها به‌دست آمد. بیشترین مقدار MWD و GMD در کشت­های یک­ردیفه سومین باز-رویش و یک­ردیفه تازه­کشت، و کمترین مقدار آنها در زمین کشت­نشده مشاهده شد. بیشترین درصد خاکدانه‌‌های درشت (بزرگتر از 2 میلی‌متر) و خاکدانه­های ریز (2-53/0 میلی‌متر)، به‌ترتیب در کشت­های یک ردیفه تازه­کشت و دوردیفه تازه­کشت مشاهد شد. بیشترین درصد خاکدانه­های متوسط در کشت­های یک ردیفه تازه­کشت، دوردیفه تازه­کشت و دو ردیفه اولین باز-رویش مشاهد شد. بر طبق نتایج، اختلاف معنی­داری بین کشت­های مورد مطالعه در خصوص کربن آلی درون خاکدانه­ها مشاهده شد، به‌نحوی‌که بیشترین میزان کربن آلی موجود در خاکدانه­ها در خاکدانه­های درشت (2-25/0 میلی‌متر)، به‌ترتیب در کشت­های دوردیفه دومین باز-رویش، دوردیفه تازه­کشت و یک ردیفه تازه­کشت مشاهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Cultivation Systems on Stability Index and Organic Carbon of Aggregates in Soils with Long-Term Sugarcane Cultivation History

نویسندگان [English]

  • N. Mollaei
  • M. Sheklabadi
  • M. Nael
Department of Soil Sciences and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction
Soil aggregate stability is a crucial indicator for evaluating soil structure, quality, and health. This index affects the physical and hydrological functions of the soil, which, in turn, depend on plant primary production and the capacity of organic carbon decomposition. Soil organic carbon plays a positive role in the formation and stability of soil aggregates. Soil organic carbon (SOC) causes a rapid decrease in water penetration into soil aggregates by creating a water-repellent coating around them and increases their stability against instant wetting stress. Land use and management, including cultivation systems and tillage methods, have an important impact on the stability and size distribution of soil aggregates. Mechanized sugarcane cultivation has a long history in Khuzestan province, particularly in Haft Tepe sugarcane cultivation and industry. Haft Tepe Agriculture is the first sugar production unit in Iran. Despite the increase in the use of chemical fertilizers, the yield of sugarcane crops has been decreasing due to the destruction of the physical properties of the soil. The study aimed to investigate the effects of different sugarcane cultivation systems on soil physicochemical-biological properties and soil stability indices in parts of Khuzestan province.
 
Materials and Methods
Soils were sampled from the surface of five farms in the Haft Tepe sugarcane cultivation complex located in the northwest of Khuzestan province. The farms included single-row, new planting cultivation (S-P); single-row, third ratoon cultivation (S-R3); double rows, new planting cultivation (D-P); double rows, first ratoon cultivation (D-R1); and uncultivated land (barren) that had been left unused for a long time. Soil organic carbon content, active carbon content, basal respiration, induced respiration, water-stable aggregates, and aggregate organic carbon fractions were measured in the sampled soil. Mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates were also calculated.
 
Results and Discussion
The study found that the organic C content was highest in the double-rows+new planting (D-P) method and lowest in uncultivated land (0.95% and 0.12%, respectively). The increase in plant density, biomass, and plant residue addition in D-P cultivation has led to an improvement in SOC content. The higher SOC content in cultivated lands compared to uncultivated land indicates the positive effect of many years of cultivation and irrigation. Among the different cultivations, double-row new planting (D-P) cultivation had significantly higher active carbon. In D-R1 cultivation, returning plant residues to the soil increased the SOC (0.59%) and active carbon content. The burning of sugarcane plant residues during harvesting and land preparation for new sugarcane cultivation in S-P fields appears to have led to a decrease in active carbon. Basal respiration and induced respiration values were significantly higher in single-row, third ratoon (S-R3) and double-row, new planting (D-P) cultivations, respectively. In S-R3 cultivation, the older plants and increased root biomass provided more rhizospheric organic C for microorganisms, resulting in higher microbial activity and respiration.   Microorganisms transform and decompose soil organic matter, which is a source of energy for their metabolic processes. Therefore, there is a close relationship between organic matter and soil microorganisms. Lower basal respiration in newly planted lands may be due to the process of land preparation for cultivation. Additionally, single-row new-planted farms had a clayey texture, which could reduce soil respiration. In general, the recycling of organic matter and microbial activity is lower in fine-textured soils compared to coarse-textured soils. The highest MWD and GMD were found in single-row, third ratoon (S-R3) and single-row, new planting (D-P) cultivations. The uncultivated land had the lowest MWD and GMD, indicating unstable soil structure due to low SOC content. The lower MWD observed in S-P cultivation could be related to tillage and hilling up operations. S-R3 cultivation had more plant residues compared to other cultures. Higher plant ages and increased root biomass and rhizodeposits led to an increase in soil aggregate formation and stability. Soil tillage, which reduces soil organic carbon, can decrease the stability of soil aggregates and structure. The S-P and D-P cultivations had the highest value of coarse aggregates (larger than 2 mm) and fine aggregates (0.53-2 mm). The highest amount of medium aggregates were observed in S-P, D-P, and D-R1 cultivations. Agricultural operations can break large soil aggregates into smaller ones, while low SOC content and burning of sugarcane residues can reduce the formation of large aggregates. The study found statistically significant differences in the OC content of aggregates among the different cultivations. The highest content of aggregates OC was found in coarse aggregates (0.25-2.0 mm) of D-R1, D-P, and S-P cultivations.
 
Conclusion
This study investigates the impact of mechanized and long-term sugarcane cultivation on the physical and biological properties of soil. Overall, the water stable aggregates and MWD were found to be unsuitable in some of the studied fields due to the low amount of SOC. This is primarily caused by the annual burning of sugarcane residue. Therefore, returning plant residues after harvesting is suggested as a significant solution to improve problems related to compaction, soil instability, and their harmful consequences.

کلیدواژه‌ها [English]

  • Active C
  • Aggregates stability
  • Cultivation systems
  • Organic C
  • Sugarcane

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press Harcourt Brace & Company Publishers London, 214–215 p.
  2. Ali, R.S., Kandeler, E., Marhan, S., Demyan, M.S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., & Poll, C. (2018). Controls on microbially regulated soil organic carbon decomposition at the regional scale, Soil Biology and Biochemistry, 118, 59-68. https://doi.org/10.1016/j.soilbio.2017.12.007
  3. Alvaro-Fuentes, J., Lopez, M.V., Arrue, J.L., & Cantero-Martınez, C. (2008). Management effects on soil carbon dioxide fluxes under semiarid Mediterranean conditions. Soil Science Society of America Journal, 72(1), 194–200. https://doi.org/10.2136/sssaj2006.0310
  4. Amézketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14, 83– https://doi. org/10.1300/J064v14n02_08
  5. Anderson, J.P.E. (1982). Soil respiration. pp. 831-871. In: Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.), Methods of soil analysis, Part 2- Chemical and Microbiological Properties. ASA-SSSA, Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c41
  6. Angers, A.D. (1998). Water stable aggregation of Quebec silty clay soils: some factors controlling its dynamics. Soil and Tillage Research, 47, 91– https://doi.org/10.1016/S0167-1987(98)00077-4
  7. Azadi, A., Seyed Jalali, S.A., Dehghan, R., & Navidi, M. (2021). Investigation of changes in physical and chemical properties of soil during different stages of sugarcane growth and estimation of organic carbon sequestration capacity, Iranian Journal of Soil Research, 35(3), 269– (In Persian with English abstract). https://doi.org/10.22092/ijsr. 2021.354244.600
  8. Bakker, M. (1999). Sugarcane Cultivation and Management. Kluwer Academic/Plenum Publishers, New York. http://dx.doi.org/10.1007/978-1-4615-4725-9
  9. Barzegar, A.R., Asoodar, M.A., & Ansari, M. (2000). Effectiveness of sugarcane residue incorporation at different water contents and the Proctor compaction loads in reducing soil compactibility. Soil and Tillage Research, 57, 167-172. https://doi.org/10.1016/S0167-1987(00)00158-6
  10. Blair, G.J., Lefroy, R.D.B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459– https://doi.org/10.1071/AR9951459
  11. Boix-Fayos, C., Calvo-Cases, A., Imeson, A.C., & Soriano-Soto, M.D. (2001). Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators, Catena, 44, 47-67, https://doi.org/10.1016/S0341-8162(00)00176-4
  12. Bronick, C.J., & Lal, R. (2005). Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio. USA, Soil and Tillage Research, 81, 239– https://doi.org/10.1016/j.still.2004.09.011
  13. Cheng, M., Xiang, Y., Xue, Zh., An, Sh., & Darboux, F. (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 124, 77– https://doi.org/10.1016/j.catena. 2014.09.006
  14. Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Bissonnais, Y.L., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87, 60-69. https://doi.org/10.1016/j.catena.2011.05.006
  15. Ghorbani, Z., Jafari, S., & Khalil Moghaddam, B. (2013). The effect of physicochemical properties of soils under different land use on aggregate stability in some part of Khuzestan province. Journal of Soil Management and Sustainable Production, 3(2), 29-51. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.23221267. 1392.3.2.2.1
  16. Gul, S., & Whalen, J.K. (2022). Perspectives and strategies to increase the microbial-derived soil organic matter that persists in agroecosystems. Advances in Agronomy, 175, 347-401. https://doi.org/10.1016/bs.agron.2022.04.004
  17. Halder, M., Ahmad, S.J., Rahman, T., Joardar, J.C., Siddique, A.B., Islam, M.S., Islam, M.U., Liu, S., Rabbi, S., & Peng, X. (2023). Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh, Geoderma Regional, 32, e00620. https://doi.org/10.1016/j.geodrs.2023.e00620
  18. Haynes, R.J., & Beare, M.H. (1997) Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biology and Biochemistry, 29, 1647–1653. https://doi.org/10.1016/S0038-0717(97)00078-3
  19. Jafari, S., Baghernejad, M., & Chorom, M. (2005). Evaluation some changes of physicochemical properties of cultivated land (under sugarcane cultivation and crop rotation) and Haft Tapeh pristine region of Khuzestan. Chamran, The Scientific Journal of Agriculture, 22, 165-181. (In Persian with English abstract)
  20. Jafari, S., Golchin, A., & Toolabifard, A. (2016). Effect of land use changes on physical fractionation properties of organic matter, clay dispersion and aggregate stability in some Khuzestan soils province. Iranian Journal of Soil and Water Reseach, 47, 593-603. (In Persian with English abstract). https://doi.org/10.22059/ijswr.2016.59329
  21. Kemper, W.D., & Rosenau, K. (1986). Size distribution of aggregates. 425-442. In: Klute, A. (ed.), Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods, American Society of Agronomy, Madison, WI.
  22. Kristiansen, S.M., Schjønning, P., Thomsen, I.K., Olesen, J.E., Kristensen, K., & Christensen, B.T. (2006). Similarity of differently sized macro-aggregates in arable soils of different texture. Geoderma, 137, 147-154. https://doi.org/10.1016/j.geoderma.2006.08.005
  23. Le Bissonnais, L.Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47, 425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x
  24. Lee, J.H., Lucas, M., Guber, A.K., Li, X., & Kravchenko, A.N. (2023). Interactions among soil texture, pore structure, and labile carbon influence soil carbon gains, Geoderma, 439, 116675, https://doi.org/10.1016/j.geoderma. 2023.116675.
  25. Luca, E.F., Chaplot, V., Mutema, M., Feller, C., Ferreira, M.L., Cerri, C.C., & Couto, H.T.Z. (2018). Effect of conversion from sugarcane preharvest burning to residues green-trashing on SOC stocks and soil fertility status: Results from different soil conditions in Brazil, Geoderma, 310, 238-248, https://doi.org/10.1016/j.geoderma. 2017.09.020.
  26. Mikha, M.M., Green, T.R., Untiedt, T.J., & Hergret, G.W. (2024). Land management affects soil structural stability: Multi-index principal component analyses of treatment interactions, Soil and Tillage Research, 235, 105890. https://doi.org/10.1016/j.still.2023.105890
  27. Moradi, F., Ghorbani, Z., Khalili Moghadam, B., & Misaghi, P. (2015). Important characteristics influencing the cone penetration resistance in virgin, cultivated, and sugarcane land uses in some Khozestan soils. Iranian Journal of Soil Research, 29(2), 163-174 (In Persian with English abstract). https://doi.org/10.22092/ijsr.2015.102210
  28. Nath, A.J., & Lal, R. (2017). Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the North Appalachian region, USA, Pedosphere, 27, 172-176, https://doi.org/10.1016/S1002-0160(17)60301-1
  29. Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon and organic matter. p. 101–129. In: Page A.L. (ed.), Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA Madison, WI.
  30. Salinas-Garcıa, J.R., Velazquez-Garcıa, J.D.J., Gallardo-Valdez, M., Dıaz-Mederos, P., Caballero-Hernandez, F., Tapia-Vargas, L.M., & Rosales-Robles, E. (2002). Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-Western Mexico. Soil and Tillage Research, 66, 143–152. https:// doi.org/10.1016/S0167-1987(02)00022-3
  31. Sawada, K., Inagaki, Y., Toyota, K., Kosaki, T., & Funakawa, S. (2017). Substrate-induced respiration responses to nitrogen and/or phosphorus additions in soils from different climatic and land use conditions, European Journal of Soil Biology, 83, 27-33, https://doi.org/10.1016/j.ejsobi.2017.10.002
  32. Seybold, C.A., & Herrick, J.E. (2001). Aggregate stability kit for soil quality assessments, Catena, 44, 37-45, https:// doi.org/10.1016/S0341-8162(00)00175-2
  33. Six, J., Conant, R., Paul, E., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176. https://doi.org/10.1023/A:1016125726789
  34. Six, J., & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4-A9. https://doi.org/10.1016/j.soilbio.2013.06.014
  35. Wang, X., Shan, K., Huang, P., Ma, M., & Wu, S. (2023). Response of soil aggregate stability to plant diversity loss along an inundation stress gradient in a reservoir riparian zone, Catena, 233, 107472, https://doi.org/10.1016/ j.catena.2023.107472
  36. Wang, J.G., Yang, W., Yu, B., Li, Z.X., Cai, C.F., & Ma, R.M. (2016). Estimating the influence of related soil properties on macro- and micro-aggregate stability in Ultisols of south-central China. Catena, 137, 545-553. https://doi.org/10.1016/j.catena.2015.11.001
  37. Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B., & Samson-Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3–17. https://doi.org/10.1079/AJAA200228
  38. Zhao, J., Chen, S., Hu, R., & Li, Y. (2017). Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 167, 73-79. https://doi.org/10.1016/j.still.2016.11.007
  39. Zheng, F., Liu, X., Zhang, M., Li, S., Song, X., Wang, B., Wu, X., & Jan van Groenigen, K. (2023). Strong links between aggregate stability, soil carbon stocks and microbial community composition across management 107509, https://doi.org/10.1016/j.catena.2023.107509

 

 

CAPTCHA Image
دوره 38، شماره 2 - شماره پیاپی 94
خرداد و تیر 1403
صفحه 285-300
  • تاریخ دریافت: 02 اسفند 1402
  • تاریخ بازنگری: 02 فروردین 1403
  • تاریخ پذیرش: 14 فروردین 1403
  • تاریخ اولین انتشار: 14 فروردین 1403