دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه کشاورزی و منابع طبیعی رامین

چکیده

این تحقیق به منظور بررسی رابطه بین اشکال مختلف آهن و پذیرفتاری مغناطیسی با تکامل خاک های گچی استان خوزستان صورت گرفت. برای این منظور 14 خاکرخ تشریح و نمونه برداری شده و مقادیر آهن و پذیرفتاری مغناطیسی آن اندازه گیری شد. موقعیت خاکها طوری انتخاب شد که از لحاظ توپوگرافی در موقعیت­های مختلف شیب قرار داشته باشند. نتایج نشان داد که میانگین آهن پدوژنیکی (Fed) و آهن بلوریFeo) - Fed) به ترتیب در خاکرخ های دشت مرتفع با کاربری زارعی، تپه و اراضی پست افزایش یافت که با میزان تکامل آنها هماهنگی دارد. کمترین و بیشترین مقدار اکسیدهای آهن فعالFed) / (Feoبه ترتیب مربوط به تپه یا اینسیلرگ قدیمی و واحدهای اراضی پست با زه‏کشی ضعیف بود. مقایسه میانگین آهن فعال نشان داد که بین واحدهای دشت مرتفع و تپه به دلیل تکامل و سن بیشتر، اختلاف معنی داری وجود نداشت اما در اراضی پست اختلاف معنی داری بین آنها وجود داشت که نشان دهنده تکامل کم این خاک­ها بود. میزان پذیرفتاری مغناطیسی آون در خاکهای تپه، بیشترین و در اراضی پست با شرایط زه‏کشی ضعیف و کاربری زراعی حداقل بود. پذیرفتاری مغناطیسی مینروژیک در خاکرخ‏های متاثر از گچ، پس از حذف آنها افزایش یافت که با مجموع کربنات کلسیم، گچ، مواد آلی و درصد شن رابطه مثبت و معنی دار و با درصد سیلت و رس رابطه معکوس و معنی داری داشت. این روند تاثیر مواد مادری را بر میزان پذیرفتاری مغناطیسی مینروژیک آشکار نموده و نشان می‏دهد که پذیرفتاری مغناطیسی مینروژیک، ارتباط مثبتی با تکامل پدوژنیکی ندارد. همچنین همبستگی بین پذیرفتاری مغناطیسی و مینروژنیک با Feo رابطه منفی و معنی دار و پذیرفتاری مغناطیسی با میزانFeo -Fed  رابطه مثبت و معنی دار نشان داد. این پژوهش نشان داد که کاربری، زه کشی و مواد مادری بیشترین اثر را بر مقادیر پذیرفتاری مغناطیسی و آهن دارند که سبب تغییر خصوصیات ژنتیکی و تکامل خاکهای گچی مورد مطالعه گردیده است.

کلیدواژه‌ها

عنوان مقاله [English]

Correlation between Different Fe Forms and Magnetic Susceptibility with the Development of Some Ramhormoz’s Soils, Khuzestan Province, Iran

نویسندگان [English]

  • Yones Abdoli
  • siroos jafari
  • abas Beshkar

Ramin University of Agricultural Sciences and Natural Resources, Khuzestan,

چکیده [English]

Introduction: The Fe forms diversity is related to parent materials, climate, soil process, biocycles, water table fluctuation, redox, organic matter and etc. in soil. The main Fe forms are Fed (extracted by dithionite citrate bicarbonate), Feo (extracted by oxalate ammonium) and Fe crystals. Feo/ Fed ratio also shows active Fe forms. Magnetic susceptibility (MS) increases when ferri-magnetite is formed due to soil processes. This characteristic (MS) changes with parent material, climate, relief, and organism. Therefore, this study was undertaken to evaluate different Fe forms and MS with soil forming factors in some gypsic soils of Khuzestan province.
Material and Methods: The study area was located in Ramhormoz and Haft-Kel regions in Khuzestan province. Soil moisture and temperature regimes were ustic and hypertermic, respectively. Soil parent material consisted of the eluvial deposit of Gachsaran and Aghajari geological formations. The soil profiles location was selected according to topography map, ETM+ Landsat satellite images, and then 14 soil pedons were dug and described according to the standard methods. All horizons or layers were sampled and 5 pedons were selected for the analysis of different Fe forms. Fed and Feowere, respectively, extracted by citrate-bicarbonate-dithionite (CBD) and oxalate ammonium, and Fe cocentration was then determined by atomic absorption spectrometry. Furthermore, MS was determined by MS2 meter Barlington Dual frequency in low (0.46 kHz) and high (4.6 kHz) frequencies. All MS were calculated for carbonates, gypsum, and OM free. These calculations were also done for Fe forms in these samples. The statistical analysis was carried out with SPSS and Pierson methods between Fe forms and MS. The Duncan’s test was used to compare the mean values.
 
Results and Discussion: Pedons were classified as Entisols, Inceptisols, and Aridisols soil orders. The range of clay content, pHe, ECe, CEC, OM, CCE and gypsum was 15-59%, 7.1-8.5, 0.6-58.1 dS/m, 4.2-22.4 cmol(c)/kg, 0.3-2.4%, 21.2-39.7%, and 0-78.7%, respectively. All epipedons were classified to be ochric and developed soils had cambic diagnostic horizon (Bw) in subsurface. Feo content was maximum in young soil under poor drainage, and minimum Feo content was observed for developed pedons with good drainage class. The sepedons have not been cultivated yet. Feo was maximum at surface soils in all pedons, and decreased with increasing depth. A decreasing trend was observed from surface to subsurface for Fe content in cultivated soils. This negative trend was not, however, detected in poor drainage class or pedons with lithologic discontinuity. This trend can be ascribedto more organic matter content in surface soil in comparison with subsurface soil. Organic matters increase soil acidity and therefore, Feo can not be converted to other Fe forms under this circumstance. Maximum Feo was determined under poor drainage class in low lands. In addition, Fed displayed no trend from the surface to depth at most pedons. Maximum Fed was foundin old plain and the hill slope summit. This Fed was positively strongly correlated with soil development trend. Fed had a positive association with clay content (r=0.463), and negative correlation with sand content (r= -0.411), salinity (r= -0.533), and total carbonate, gypsum and OM (r= - 0.389). Feom (Feo menerogic) was maximum in Byz (4.04 gr/kg soil) and minimum content for Feomwas found in Byb (0.29 gr/kg soil). Maximum andminimum Fedmwas measured in Cy (9.21 g/kg) and Bg2 (1.54 g/kg), respectively. The Feo/ Fed ratio was largerin young soil and decreased with time. These values decreased from the surface to depth with the range from 0.07 to 0.8. The greatest and lowest Feo/ Fedwere, respectively, observed inthe hills and the low lands. There was no significant difference in Feo/ Fed between hill and plain.
MS changed from 5 to 25.5. Maximum and minimum MS was detected in the hills and the low lands. MS decreased with depth in almost all horizons. The highest and lowestMS were, respectively, found in pedon 3 (Byb horizon) and pedon 12 in the Bw3 horizon. The MS minerogenicwas statistically significantly associated to sand content (r=0.56**) and significantly negatively correlated with total carbonates, gypsum, OM (r=-0.667**), silt content (r= -0.506) and clay content (r= -0.456). The positive relationship between sand content and MS can be explained by the effect of magnetic materials inherited from the parent materials.
Conclusion: Fed and Feo- Fed showed a close correlation with soil development. Feo/Fed ratio increased with decreasing soil age. Feo content had a positive correlation with total carbonate, OM, salinity. MS was more in older soils such as hill physiographic unit but it was low in younger soils or soils with weak drainage. MS was greatly affected by sand material size which seems to be linked to parent materials. MS showed no trend with soil development but land use, drainage and parent material largely impacted MS and different Fe forms in these gypsiferous soils.

کلیدواژه‌ها [English]

  • Drainage
  • Fe
  • Land user
  • Magnetic susceptibility
  • gypsic soils
1. Alison L.E., and Moodie C.D. 1965. Carbonate. Pp. 1369-1379. In: Black CA (Ed.) Method of Soi Analysis. Part II, Monograph No. 9. Amrican Socity of Agronomy, Madison, WI.
2. Banaie M.H. 1999. Soil moisture and temperature regimes map of Iran. Soil and water research institu, Iran.
3. Blume H. P., and Schwertmann U. 1969. Genetic evaluation of profile distribution of Al, Fe and Mn oxides. Soil Science Society of America, 33: 438-444.
4. Blundell A., Dearing J.A., Boyle J.F., and Hannam J.A. 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Science Reviews, 95: 158–188.
5. Bouma J. 1990. Classification and Management of Wet Soils. Report of ICOMAQ. Circular 10. In: Eighth International Soil. Correlation Meeting, USDA, Soil Service, Soil Management Support Services, USDA.
6. Bouyoucos G.J. 1951. A recalibration of hydrometer method for making mechanical analysis of soil. Agronomy, 43: 434-438.
7. Caitcheon G.G. 1993. Applying environmental magnetism to sediment. Tracer in Hydrology. Proceeding of the Yokohama Symposium, 215. JAHS Pub.
8. Chapman H.D. 1965. Cation exchange capactiy. Pp.811 – 903 in: Black CA (Ed.) Methods of Soil Analysis. Part II. Monograph No. 9. Am Soc Agron., Madison, WI.
9. De Jong E., Pennock D.J., and Nestor P.A. 2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan, Canada. Catena, 40: 291-305.
10. De Jong E., Kozak L.M., and Rostad P.W. 1999. Effects of parent material and climate on the magnetic susceptibility of Saskatchewan soils. Canadian of Journal Soil Science, 1: 135-142.
11. Dearing J. A., Hay K.L., Balsan S. M.J., Huddleston A.S., Wellington E.M.H., and Loveland P.J. 1996. Magnetic susceptibility of soil: An evaluation of contributing theories using a national data set. Geophysical Journal International, 127:728-734.
12. Dethier D.P., Birkeland P.W. and McCarth J.A. 2012. Using the accumulation of CBD-extractable iron and clay content to estimate soil age on stable surfaces and nearby slopes, Front Range, Colorado. Geomorphology, 173: 17-29.
13. Feng Z.D., and Johnson W.C. 1995. Factors affecting the magnetic susceptibility of a loess-soil sequence, Barton County, Kansas, USA. Catena, 24: 25-37.
14. Fine P., Singer M.J., and Verosub K.L. 1992. The use of magnetic susceptibility measurements in assessing soil uniformity in chronosequence studies. Soil Science Society of America, 56: 1195-1199.
15. Gasparatos D., arenidis D.T., Haidouti C., and Oikonomou G. 2005. Microscopic structural Fe-Mn nodule environmental impilication. Environmental Chemistry Letters, 2:175-178.
16. Grimley D.A., Arruda N.K., and Bramstedt M.W., 2004. Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the Midwestern USA. Catena, 58: 183-213.
17. Hanesch M., and Schloger R. 2005. The influence of soil type on the magnetic susceptibility measured through soil profiles. Geophysical Journal International, 161: 50-56.
18. Hosseini S.S., Esfandiarpour Borujeni I., Farpoor M.H., and Karimi A.R. 2015. Comparsion of different soil development indices along Kerman-Baft transect. Journal of Soil Management and Sustainable, 5(2): 23-1. (In Persian with English abstract)
19. Howard J.L., Clawson C.R. and Daniels L.W. 2012. A comparison of mineralogical techniques and potassium adsorption isotherm analysis for relative dating and correlation of Late Quaternary soil chronosequences. Geoderma, 179, 180: 81–95.
20. Hu X., Xu L., and Shen M. 2009. Influence of the aging of Fe oxides on the decline of magnetic susceptibility of the Tertiary red clay in the Chinese Loess Plateau. Quaternary International, 209: 1-9.
21. Hussain I., Olson K.R., and Jones R.L. 1998. Erosion patterns on cultivated and uncultivated hill slopes determined by soil fly ash contents. Journal of Soil Science, 163(9): 726-738.
22. Karimi A., and Khademi H. 2012.The impact of parent material, gypsum and carbonate on the magnetic susceptibility of Southern soils Mashhad. Journal of Sciences and Technology of Agriculture and Natural Resources, 16(61): 247-258. (In Persian with English abstract)
23. Karimi R., Ayoubi Sh., Jalalain A., Sheikh-Hosseni A.R., and Afyuni M. 2011. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. Journal of Applied Geophysics, 74: 1– 7.
24. Khan F.A., and Fenton T.E. 1994. Saturated zones and soil morphology in a Mollisol catena of central Iowa. Soil Science Society of America, 58:1457-1464.
25. Kravchenko A.N., Bollero G.A., Omonode R.A., and Bullock D.G. 2002. Quantitative mapping of soil drainage classes using topographical and soil electrical conductivity. Soil Science Society of America, 66: 235–243.
26. Lu S.G. 2000. Characterization of magnetism and iron oxide minerals of Quaternary red earth and its paleoenvironmental implication. Acta Pedologica Sinica, 37: 182-191.
27. Lu Sh., Zhu L., and Yu J. 2012. Mineral magnetic properties of Chinese paddy soils and its implications. Catena, 93: 9-17.
28. Mathe V., and Leveque F. 2003. High resolution magnetic survey for soil monitoring: detection of drainage and soil tillage effects. Earth and Planetary Science Letters, 212: 241– 251.
29. McFadden L.D., and Hendricks D.M. 1985. Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California.Quaternary Research, 23: 189-204.
30. Mokhtari Karchegani P., Ayoubi S., Lu S.G., and Honarju N. 2011. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. Journal of Applied Geophysics, 75: 227–236.
31. Mullins C.E. 1977. Magnetic susceptibility of the soil and its significance in soil science - a review. Journal of Soil Science, 28: 223-246.
32. Nelson R.E. 1982. Carbonate and gypsum, P. 181-196. In: A. L. Page et al. (Eds.), Methods of Soil Analysis (2nd Ed). Part 2, Agron, Monogar, No: 9, ASA and SSSA, Madison.
33. Owliaie H.R., Adhami E., Jafari S., Rajaie M., and Ghasemi Fasai R. 2009. The distribution of magnetic
34. Susceptibility associated with iron compounds in some soils of Fars Province. Iranian Journal of soil research, 23(2): 191-204. (In Persian with English abstract)
35. Pajohannia, M., Chorom M., and Jafari S. 2016. The Effect of water table fluctuation and its salinity on Fe crystal and noncrystal in some Khuzestan soils. Journal of Water and Soil. 30(5): 1531-1542. (In Persian with extended English abstract)
36. Rezapour S., Jafarzadeh A.A., Samadi A., and Oustan S. 2010. Distribution of iron oxides forms on transect of calcareous soils, northwest of Iran. Archives of Agronomy and Soil Scienc, 56:165-182.
37. Scarciglia F., Tuccimei P., Vacca A., Barca D., Pulice I., Salzano R., and Soligo M. 2011. Soil genesis, morphodynamic processes and chronological implications in two soil transects of SE Sardinia, Italy: Traditional. Geoderma, Volume 162, Issues 1–2, Pages 39-64.
38. Schaetzl R.J., and Anderson S. 2005. Soils: Genesis and Geomorphology. Cambridge University Press, UK.
39. 38-Schwertmann U., 1984. The effect of pedogenic environments on iron oxide minerals. Advances in Soil Sciences, Vol. 1: 171- 200.
40. Schwertmann U., and Taylor R.M. 1989. Iron oxides. In: Dixon, J.B., Weed, S.B. (Eds.), Minerals in Soil Environment. Soil Science Society of America, Madison, WI, USA. PP. 379 –438.
41. Singer M.J., Verousb K.L., Fine P., and Tenpas J. 1996. A conceptual model for the enhancement of magnetic susceptibility in soils. Quaternary International, 34: 243- 248.
42. Soil Survey Staff. 2002. Field book for describing and sampling soil. Version 2.0. National soil survey center, USDA, USA.
43. Soil Survey Staff. 2014. Keys to Soil Taxonomy. Second edition. USDA, NRCS.
44. Stonehouse H.B., and Arnaud R.J. 1971. Distribution of iron, clay and extractable ironand aluminum in some Skatchewan soils. Canadian of Journal Soil Science, 51: 283-292.
45. United State Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook, 60, Washington, DC.
46. Walkley A., and Black I.A. 1934. An examination of the Degetiareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37: 29-38.
47. Wiederhold J., Teutsch N., Kraemer S., and Halliday A. 2007. Iron isotope fractionation during pedogenesis in reoxomorphic Soil. Soil Science Society of America, 71:1840-1850.
CAPTCHA Image