دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

عناصر مس و روی یکی از عناصر کم­مصرف لازم برای رشد گیاهان است که قابلیت استفاده آن­ها توسط بسیاری از عوامل تحت­تأثیر قرار می‌گیرند. فرآیندهای جذب نقش تعیین­کننده بر حلالیت عناصر مذکور در محلول خاک و درنتیجه دردسترس بودن آن­ها برای گیاهان ایفا می­کند. اسیدهومیک مهم­ترین بخش آلی خاک بوده که دارای توانایی جذب فلزات می­باشد. هدف از این تحقیق استخراج اسیدهومیک خاک، مطالعه جذب سطحی عناصر بر سطح اسیدهومیک و تعیین ضرایب جذب سطحی آن­ها با استفاده از همدماهای جذب می­باشد. در این پژوهش ده نمونه خاک سطحی از مناطق جنگلی استان گیلان جمع­آوری شد. اسیدهومیک موجود در خاک­ها با استفاده از محلول­های 1/0 مولار NaOH و 6 مولار HCl استخراج و با 1/0 مولار HCl + 3/0 مولار HF خالص­سازی شد. همدمای جذب عناصر (فلزات) مس و روی با به تعادل رساندن اسید هومیک با محلول­هایی با غلظت 10، 20، 40، 60 و 80 میلی­گرم بر لیتر مس و روی بترتیب از منابع  CuSO4و  ZnCl2در محلول زمینه Ca(NO3)2 01/0 مولار بدست آمد. نمونه­ها به مدت 12 ساعت در 5pH= و دمایC°25 در شیکرانکوباتور تکان داده شدند، سپس نمونه­ها سانتریفیوژ و مایع رویی از کاغذ صافی عبورداده و توسط دستگاه جذب اتمی قرائت شد. داده­های آزمایشی بر سه مدل همدمای لانگمویر، فروندلیچ و تمکین برازش داده شدند. دقت برازش داده­ها براساس معیارهای ارزیابی R2 وRMSE نشان داد که مدل فروندلیچ جذب مس و روی را به خوبی توصیف می­کند. با انجام مقایسه میانگین بین مقادیر حداکثر جذب محاسبه شده از مدل لانگمویر نشان داد که جذب مس بیشتر از روی است.

کلیدواژه‌ها

عنوان مقاله [English]

Study of Adsorption Isotherm of Copper and Zinc on Humic Acid Extracted from Soil

نویسندگان [English]

  • M. Anoosha
  • A. Forghani

Department of Soil Science, Faculty of Agricultueral Sciences, University of Guilan

چکیده [English]

Introduction: Copper and zinc are two of the most important microelements affecting plant growth which can be influenced by many factors. The adsorption processes play a determinative role in solubility of copper and zinc elements in the soil solution and, therefore, their availability to plants. Organic matter is one of the most important factor that have an significant role on the absorption and desorption of elements in the soil. These materials are divided into humic and non-humic groups. Humic substances are divided into three groups of fulvic acid, humic acid and humic, based on their resistance and solubility in acid and base. Humic acid with a medium molecular weight and color is soluble into base and insoluble into acid, and has a medium resistance against the microbial attack. It forms the most important organic part of the soil and is capable to adsorb metals. The purposes of this study were to extract soil humic acid, study the adsorption of metals on the surface of humic acid and to determine the metals adsorption coefficients using adsorption isotherm models.
Materials and Methods: Sampling was done from forest areas of northern Iran. Some physical and chemical properties of the studied soil were determined. Then, the humic acid of the soils was extracted by 0.1 M NaOH and 6 M HCl, and purified by 0.1M HCl+0.3M HF. Functional group, E4/E6 ratio (Optical density or absorption of dilute solutions at wavelengths of 465 and 665 nm), and humification index of the extracted humic acid were measured. Some other properties of the extracted humic acid have also been analyzed. To study the adsorption isotherms of Zn and Cu in the presence of humic acid, solutions with concentrations of 10, 20, 40, 60 and 80 mg/L of  ZnCl2 (zinc adsorption testing) and CuSO4 (copper adsorption testing) were prepared, respectively in a 0.01M Ca(NO3)2 background solution, and added to 250 g of  humic acid. The samples were shaken for 12 hours (based on the time of equilibrium) at pH=5 and 25 °C in incubator shaker, then the samples were centrifuged and the supernatant was passed through filter paper and measured using atomic adsorption spectrophotometer device. The difference between initial concentration and final concentration identified the amount of adsorbed element.
Results and Discussion: The results of the acidic functional groups measurement in the humic acid samples revealed that the most of total acidity (60%) was due to the presence of phenolic groups while the carboxylic groups were responsible for the remaining (40%). Phenolic groups were abundant in the primary stages of the decomposition of humic materials. Since the soil used for extracting humic acid was covered with broad leaf trees and the continuous entry of organic matter into it (the fall of leaves) lasted for many years and due to the low temperature of the soil in part of the year, it can be said that a significant part of the soil organic matter is in the primary or middle stages of humification and the phenolic OH groups/carboxylic groups ratio in the humic acid extracted from them was high. The equilibrium time for adsorption of both  metals occured at 12 h to achieve maximum adsorption level in the presence of humic acid. The obtained experimental data were fitted to three models of Langmuir, Freundlich, and Tampkin. The accuracy of mentioned models to fit data were estimated based on the detection coefficient (R2) and the roots of mean square error (RMSE). The results showed that the Freundlich model with higher detection coefficient and lower roots of mean squared error describes the adsorption of copper and zinc elements, well. To better compare the adsorption of the elements by humic acid, Langmuir's b parameter (Expresses maximum adsorption) can be used. The maximum adsorption of copper (23.04 mg/g) by humic acid was higher than zinc adsorption (13.8 mg/g). This trend is consistent with the Irving–Williams series of divalent elements: Mn < Fe < Zn < Co < Ni < Cu. It is generally believed that humic acid is a good complexing agent for many metal ions and its binding to metal ions can improve the adsorption.
Significance differences were tested by a parametric 𝑡-test or 𝐹 statistics in ANOVA (analysis of variance). There was a significant correlation between the maximum adsorption of metals (b) and the properties of humic acid at a probability level of 5%.

کلیدواژه‌ها [English]

  • Adsorption isotherm
  • Equilibrium time
  • Extraction of humic acid
  • Functional group
  1. Adamson A.W., and Gast A.P. 1997. Physical Chemistry of Surfaces, sixth ed., Wiley-Interscience, New York.
  2. Adamtey N., Co e O., Ofosu-Budu G.K., Danso S.K.A., and Forster D. 2009. Production and storage of N- enriched co-compost. Waste Management 29: 2429-2436.
  3. Ahmad R., Khalid A., Arshad M., Zahir Z.A. and Mahmood T. 2008. Effect of compost enriched with N and L- tryptophan on soil and maize. Agronomy for Sustainable Development 28(2): 299–305.
  4. Amir S., Benlboukht F., Cancian N., Winterton P., and Hafidi M. 2008. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazard. Mater 160: 448–455.
  5. Azizi P., And Jafari Sayadi R. 2005. Humus Materials, Guilan University Press. Rasht. (In Persian)
  6. Busato J.G., Lima LS., Aguiar N.O., Canellas L.P., and Olivares F.L. 2012. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology 110: 390-395.
  7. Campitelli P.A., Velasco M.I., and Ceppi S.B. 2006. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta 69:1234-1239.
  8. Chabani M., Amrane A., and Bensmaili A. 2006. Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chemical Engineering Journal 125: 111-117.
  9. Chabani M., Amrane A., and Bensmaili A. 2009. Equilibrium sorption isotherms for nitrate on resin Amberlite IRA-400. Journal of Hazardous Materials 165: 27-33.
  10. Chen Y., Senesi N., and Schnitze M. 1977. Information provided on humic substances by E4/E6 ratios. Soil Science society of American Journal 41: 352-358.
  11. Chorom M., and Abdollahi F. 2007. Study of adsorption properties of manganese and zinc elements in sugarcane industry and cultivation soils (Imam Khomeini and Haft Tapeh) 38: 593-601. (In Persian)
  12. El-Eswed B., and Khalili F. 2006. Adsorption of Cu(II) and Ni(II) on solid humic acid from the Azraq area Jordan. Journal of Colloid and Interface Science 299: 497–503.
  13. Freundlich H.M.F. 1906. Over the adsorption in solution. The Journal of Physical Chemistry 57: 385–471.
  14. Gee G.W., and Bauder J.W. 1986. Particle-size analysis. p. 383-411. In A. klute (ed.) Methods of Soil Analysis. Part 1. SSSA, Madison, Wisconsin.
  15. Ghasemi-Fasaei R., Alavi F., Zibaei Z., Basiri N., and Kazemi R. 2013. Investigation of single and bi-solute retention isotherms of copper and lead in acidic and alkaline soils. International Journal of Agriculture and Crop Science 5(6): 627-631.
  16. Gregorich E.G., Greer K.J., Anderson D.W., and Liang B.C. 1998. Carbon distribution and losses: erosion and deposition effects. Soil and Tillage Research 47(3): 291-302.‏
  17. Gungor E.B.O., and Bekbolet M. 2010. Zinc relese by humic and fluvic acid as influenced by pH, complexation and DOC sorption. Geoderma 159: 131-138.
  18. Gupta U.C., Kening W.U., and Siyuan L. 2008. Micronutrients in soils, crops and livestok. Earth Science Frontiers 15(5): 110-125.
  19. Haghniya G.H., Ghorbani R., and Ramezanian A. 2013. Soil organic matter in Sustainable Agriculture. Ferdowsi University Press, Mashhad. (In Persian)
  20. Haghseresht F., and Lu G. 1998. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 12: 1100–1107.
  21. Hosseinpour A.R. 2008. Chemistry and Soil Fertility. Noor Payam University Press.Tehran. (In Persian)
  22. Jackman A., and King T.N. 1986. The kinetics of ion exchange on natural sediments. Water Resources Research, 22(12): 1664-1672.
  23. Jain C.K., and Ram D. 1996. Adsorption of lead and zinc on bed sediments of the river Kali. Water Research 31: 154-162.
  24. Kerndorff H., and Schnitzer M. 1980. Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44(11): 1701-708.
  25. Kononova M.M. 1961. Soil organic matter. Translated by Nowakowski T. Z., and G. A. Greenwood Pergamon Press, Oxford.
  26. Korte N.E. et al. 1976. Trace elements movement in soils: Influence of soil physical and chemical properties. Soil Science 122: 350-358.
  27. Langmuir I. 1916. The constitution and fundamental properties of solids and Liquids. Journal of the American Chemical Society 38(11): 2221–2295.
  28. Page A.L., Miller H., and keeny D.R. 1982. Method of soil analysis. part 2.chemical and microbial properties, ASA and SSSA, madison, Wisconsin, USA.
  29. Piri M., and Sepehr E. 2015. The Effect of Humic Acid on Zinc Adsorption and Desorption. Journal of Agricultural Science and Technology, Water and Soil Science 19: 127-136. (In Persian)
  30. Qi Y., Zhu J., Fu Q., Hu Ho., and Huang Q. 2017. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. Journal of Environmental Management 200: 304-311
  31. Rashid M.A. 1979. Absorption of metals on sedimentary and peat humic acid. Chemical Geology 13: 115-123.
  32. Rastgari M., Saeedi M., and Mollahosseini A. 2015. The effect Humic acid on phenanthrene sorption in kaolin clay. Journal of Health and Environment 8(2): 237-247.
  33. Reyhani Tabar A., and Ramezanzadeh H. 2016. A view of the modeling of adsorption isotherms in soil. Lands Management Journal 4(2): 133-159. (In Persian)
  34. Richardson J.L., and Vepraskas M.J. 2001.Wetland Soils Genesis, Hydrology, Landscapes and Classification. LEWIS/CRC, NewYork.
  35. Sanchez-Monedero M.A., Roig A., Cegarra J., and Bernal M.P. 1999. Relationships between water soluble carbohydrate and phenol fractions and the humifcation indices of different organic wastes during composting. Bioresource Technology 70: 193-201.
  36. Scheidegger A.M., Fendrof M., and Sparks D.L. 1996. Mechanisms of nickel sorption on pyrophylite: Macroscopic and microscopic approaches. Soil Science Society of America Journal 60: 1763-1772.
  37. Shahooyi S. 2006. The nature and properties of soils. Kordestan university press.
  38. Swift R.S. 1996. Organic matter characterization. In D. L. Sparks et al. (ed.), Methods of Soil Analysis: Part 3. Chemical Methods, SSSA Book Series 5.SSSA, Madison, WI, 1018-1020.
  39. Tan K.H. 2003. Humic matter in soil and the environment. Principles and controversies, Marcel Dekker, New York, USA.
  40. Tempkin M.I., and Pyzhev V. 1940. Kinetics of ammonia synthesis on promotedniron catalyst, Acta Physico-Chimica Sinica. USSR 12: 327–356.
  41. Tipping E. 2004. Cation binding by humic substances. Cambridge University Press, Cambridge.
  42. Vijayaraghavan K., Padmesh T.V.N., Palanivelu K., and Velan M. 2006. Biosorption of nickel (II) ions onto Sargassum wightii: application of twoparameter and three parameter isotherm models. Journal of Hazardous Materials 133: 304–308.
  43. Wang Y., Combe C., and Clark M.M. 2001. The effects of pH and calcium on the diffusion coefficient of humic acid. Journal of Membrane Science 183: 49-60.
  44. Wang Y., Marc Michel F., Choi Y-o., Eng P.J., Levard C., Siebner H., Gu B., Bargar J.R., and Brown G.E. 2016. Pb, Cu, and Zn Distributions at Humic Acid-Coated Metal-Oxide Surfaces. Geochimica et Cosmochimica Acta, 188: 408-423.
  45. Yang K., Miao G., Wu W., Lin D., Pan B., Wu F., and Xing B. 2015. Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere 138: 657-663.
  46. Yong R.N., and Mourato D. 1988. Extraction and characterization of organics from two champlain sea subsurface soils. Canadian Geotechnical Journal 25: 599-607.
  47. Zeldowitsch J. 1934. Adsorption site energy distribution. Acta Chimica (Academiae Scientiarum) Hungaricae, URSS, 1: 961–973.
CAPTCHA Image