##plugins.themes.bootstrap3.article.main##

شیما تاج آبادی بیژن قهرمان علی نقی ضیائی

چکیده

با استفاده از اطلاعات ریز مقیاس شده می توان نیاز به وجود داده در مکان و زمان مختلف را رفع نمود.فراکتال اخیراً برای ریزمقیاس سازی داده‌های اندازه گیری شده، مورد استفاده قرار گرفته است. در این تحقیق از توابع درون یاب فرکتال برای تولید داده های ریزمقیاس شده روزانه و سه ساعته ایستگاه سینوپتیک مشهد استفاده شد. همچنین دو نگرش متفاوت در محاسبه فاصله هاسدرف در تعیین نقاط درون یابی (محاسبه فاصله هاسدرف نگرش اول: با داده های استانداردسازی نشده، نگرش دوم: با داده های استانداردسازی شده) استفاده شد و سه فاصله نقاط درون یابی متفاوت 5، 10، 15 روز در نظر گرفته شد. نتایج مربوط به ریزمقیاس سازی با فاصله درون یابی 5 و 10 روز و نگرش اول از دیگر نتایج مناسب تر بودند، به دلیل خطای کم بین نتایج فاصله درون یابی 5 و 10 روز و با توجه به اهمیت زمان اجرای برنامه و استفاده از داده های کمتر، فاصله درون-یابی10 روز بهترین نتیجه را حاصل کرد. آزمون های آماری مقادیر آماره R2 را برای نگرش اول بین 98/0-74/. و نگرش دوم 98/0-69/0، RMSE را برای نگرش اول بین 33/1-12/5 و نگرش دوم 44/1-9/5 درجه سانتیگراد و معیار اطلاعاتی آکائیک AICc را برای نگرش اول بین 55/0-19/3 و نگرش دوم 87/2-46/3 نشان دادند و همچنین عرض از مبدأها و شیب های خطوط مدل سازی در سطح 5درصد تفاوت معنی داری به ترتیب با صفر و یک ندارند. بر اساس نتایج بدست آمده، ریزمقیاس‌سازی زمانی روزانه و سه ساعته با دقت و کیفیت قابل قبول انجام شده است و در نهایت نگرش اول نتایج بهتری را نسبت به نگرش دوم ارائه کرده است.

جزئیات مقاله

مراجع
1- Barnsley M.F. 1993. Fractals Everywhere. 2nd ed. New York, Academic Press.
2- Chuanzhen L., Xiangdong, G. and Shuping Sh. 2000. A speedup method for fractal encoding of digital signals.Signal Processing, 5th International Conference on WCCC-ICSP, 2: 1115-1118.
3- GhahramanB. and Davary K. 2014. Adopting Hierarchial Cluster Analysis to Improve the Performance of K-mean Algorithm. Journal of Water and Soil, Vol. 28, 3, p: 471-480. (in Persian with English abstract).
4- Li Z.F. and Li X.F. 2008. An explicit fractal interpolation algorithm for reconstruction of seismic data. Chinese Physics Letters, 3: 1157-1159.
5- Mazel D.S. and Hayes M.H. 1992.Using itegrated function systems to model discrete sequences.IEEE Transactions on Signal Processing, 40 (7) :1724-1734.
6- McQuarrie A. D. and Tsai C. L. 1998. Regression and time series model selection, World Scientific Publishing Co. Pte. Ltd.
7- Pathirana A. 2001. Fractal modeling of rainfall: Downscaling in time and space for hydrological applications. PhD thesis, University of Tokyo, Japan.
8- Puente C.E. 1995. Geometric modeling of rainfall fields. Water Resources Center Technical Completion Report W-804. Univercity of California, Davis.
9- Shahedi M., Sanaiinejad S.H. and Ghahraman B. 2012. Regional Frequency Analysis of Annual Maximum 1-day and 2-day Rainfalls Using Clustering and L-moments, Case study: Khorasan Razavi Province. . Journal of Water and Soil, Vol. 27(1): 80-89 .( in Persian with English abstract).
10- Shamkoueyan H., Ghahraman B., Davary K. and Sarmad M. 2009. Flood frequency analysis using Linear moment and flood index method in Khorasan provinces. Journal of Water and Soil, Vol. 23(1): 31-43. (in Persian with English abstract).
11- Strahle W.C. 1991. Turbulent combustion data analysis using fractals. AIAA,J, 3: 409-417.
12- Tajabadi Sh., Ghahraman B. and Ziaei A.N. 2016. Fractal analysis of temperature time series. Msc thesis, Ferdowsi University of Mashhad, Iran.
13- ValidiN., Ziaei A.N., Ghahraman B. and Ansari H. 2014. Using Fractal Interpolation Functions for Temporal Downscaling of Temperature Data. Journal of Water and Soil, Vol. 27(6): 1123-1132.
14- Zhou G.Y. and Leu M.C. 1993. Fractal geometry model for wear prediction. Wear, 170: 1-14.
ارجاع به مقاله
تاج آبادیش., قهرمانب., & ضیائیع. ن. (2017). تأثیر دو نگرش متفاوت فاصله ی دو مجموعه بر روی ریزمقیاس نمایی فراکتالی درجه حرارت در مشهد. آب و خاک, 31(1), 331-344. https://doi.org/10.22067/jsw.v31i1.52049
نوع مقاله
علمی - پژوهشی