##plugins.themes.bootstrap3.article.main##

فاطمه رحمتی اردوان کمالی

چکیده

مطالعه حاضر با هدف مقایسه چهار روش محاسبه وزن در ارزیابی کیفی و کمی تناسب اراضی با استفاده از منطق فازی برای پیش‌بینی عملکرد گندم در شهر کیان، استان چهارمحال و بختیاری انجام شد. در این مطالعه وزن خصوصیت‌ها و کیفیت‌های مؤثر بر گندم شامل خصوصیات اقلیمی و ویژگی های خاک با استفاده از چهار روش شبکه عصبی با یک نرون و چهار نرون، حداقل مجذورات جزﺋﻰ و رگرسیون چند متغیره محاسبه شد. در همه روش‌های وزن‌دهی بیشترین وزن مربوط به سنگریزه و کمترین وزن مربوط به رس بود. مقایسه نتایج ارزیابی به روش فازی به هر چهار روش محاسبه وزن از طریق مقایسه ضریب تبیین معادلات رگرسیونی بین شاخص اراضی و تولید مشاهده شده انجام گرفت. ضریب تبیین بین تولید مشاهده شده و تولید پیش‌بینی شده برای روش محاسبه وزن شبکه عصبی با یک نرون و چهار نرون، حداقل مجذورات جزﺋﻰ و رگرسیون چند متغیره به ترتیب 595/0، 56/0، 596/0و 6/0 به دست آمد. نتایج استفاده از وزن تخمین زده شده به وسیله سه روش شبکه عصبی با یک نرون، حداقل مجذورات جزﺋﻰ و رگرسیون چند متغیره در روش فازی مشابه بود و بیشترین ضریب تبیین و کم‌ترین مقادیر جذر میانگین مربعات خطاها در بین مدل‌ها برای این سه روش به دست آمد. اما در مورد شبکه عصبی استفاده از یک نرون به جای چهار نرون با تفاوتی اندک کارآمدتر بود. ضریب تبیین نسبتاً کم به دست آمده از روش های مورد استفاده حاکی از اهمیت مدیریت اراضی در میزان عملکرد دارد. نتایج این مطالعه بر ضرورت وارد نمودن پارامارهای مدیریتی در محاسبات ارزیابی اراضی دلالت نمود.

جزئیات مقاله

مراجع
1- Almeida J., and Predictive S. 2002. Non-linear modeling of complex data by artificial neural networks. Current Opinion in Biotechnology, 13: 72-6.
2- Amirian chekan A., Sarmadian F., Heidari A., Omid M., and Mohammadi J. 2012. The spatial modeling of the land suitability using fuzzy set theory and geostatistics (case study: Seylakhor plain, Dorood county, Lorestan province). Journal of grassland and watershed resources management, 65(3):96-116.
3- Ayoubi S. 1997. Qualitative and quantitative land suitability for important crops in North- Baraan (Isfahan). M.Sc. Thesis, College of Agriculture, Isfahan University of Technology. (in Persian with English abstract)
4- Burrough P.A., 1989. Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science, 40: 477-492.
5- Chin W.W., Marcolin B., and Newsted P. 1996. A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and voice mail emotion/adoption study. p. 21-41. In proceeding of the 17th international conference on information systems, 16-18 Dec. 1996. Cleveland, Ohio.
6- Damavandi A., Masihabadi M.H., Takasi M. 2005. Qualitative land evaluation for sugar beet in Khodabandeh, Zanjan province. In proceeding of the 9th soil science congress of Iran. 25-28 Aug. 2005. Tehran, Iran. (in Persian)
7- Dent D., and Young A. 1981. Soil survey and land evaluation. George Allen and Unwin, Boston.
8- FAO. 1976. A framework for land evaluation. Soils Bulletin, No. 32. FAO, Rome, Italy.
9- Givi J. 1999. Qualitative, quantitative and economic land suitability evaluation and determining the land potential yield for important crops of Falavarjan area in Isfahan. (In Persian).
10- Karayiannis N.B., and Venetsanopouios A.N. 1993. Artificial Neural Network: learning algorithms, performance evaluation, and application. Kluwer academic publisher, boston.
11- Keshavarzi A., Sarmadian F., Heidari A. and Omid M. 2010. Land Suitability Evaluation Using Fuzzy 11- Continuous Classification (A Case Study: Ziaran Region). Journal of Modern Applied Science. 4(7): 72-81.
12- Mahler P. 1970. Manual of land classification for irrigation. Ministry of Agriculture (3rd ed). Soil and water Institute of Iran, No. 205.
13- Mohammadi j., and Givi j. 2011. Land suitability evaluation for irrigated wheat in Falavarjan using fuzzy set theory. Journal of Sciences and Technology of Agriculture and Natural Resources. 5(1):103-116. (in Persian with English abstract)
14- Noruzi M., Jalalian A., Ayoubi S., and Khademi H. 2008. Relationship between Wheat Yield and Terrain Attributes in Ardal Region, Charmahal and Bakhtiari Province. Journal of Sciences and Technology of Agriculture and Natural Resources. 12(46):759-770. (in Persian with English abstract)
15- Salehi M.H. and khademi H. 2008. Soil Mapping. Isfahan, Iran. (In Persian)
16- Sargent D.J. 2001. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer. 91:1636-42.
17- Shahnazarpoor G.H. 2008. Quantitative and Qualitative land suitability evaluation for important agricultural crop in mobarakeh area, Isfahan province (a comparison between fuzzy and Boolean logic). M.Sc. Thesis, College of Agriculture, Isfahan. University of Technology. (In Persian)
18- Sohrabi A., Mohammadi J., Behrahi K. and Seyed Jalali A. 2005. The Investigation Of The superiority Reasons of Fuzzy Method to FAO in Land Suitability Classification. p. 277-278. In proceeding of 10th soil science congress of Iran. Aug. 26-28. Karaj, Iran. (in Persian with English abstract)
19- Soil survey staff, 2014. Keys to soil taxonomy, 12th edition. NRCS, USDA, USA.
20- SYS C., Van Ranst E. and Debaveye J. 1991. Land Evaluation. Part І. General Administration for Development Cooperation Place. Brussels, Belgium.
21- Weather Bureau of Shahrekord. 2013. Shahrekord, Iran.
22- Zare Abyaneh H. 2012. Evaluation of Artificial Neural Network and Geostatistical Methods in Estimating the Spatial Distribution of Irrigated and Dry Wheat Yield (Case Study: Khorasan Razavi). Journal of Natural Geography. 44 (4):23-42. (In Persian, abstract in English).
ارجاع به مقاله
رحمتیف., & کمالیا. (2016). مقایسه چهار روش محاسبه وزن در ارزیابی تناسب اراضی به کمک منطق فازی برای پیش‌بینی عملکرد گندم. آب و خاک, 31(1), 277-285. https://doi.org/10.22067/jsw.v31i1.52571
نوع مقاله
علمی - پژوهشی