##plugins.themes.bootstrap3.article.main##

بنفشه افراسیابی ابراهیم ادهمی حمیدرضا اولیایی

چکیده

مطالعه حاضر به منظور بررسی اثر نوع و سطوح مختلف بیوچار در شرایط مختلف رطوبتی بر قابلیت جذب کادمیم افزوده شده به یک نمونه خاک آهکی طی یک دوره 90 روزه انجام شد. آزمایش بصورت فاکتوریل 2×9 در قالب طرح کاملا تصادفی در دو تکرار انجام شد. تیمار¬ها شامل مصرف بیوچار در 9 سطح شامل: عدم مصرف بیوچار (شاهد) و تفاله خام پسته و بیوچار تهیه شده آن در دما¬های 200، 400 و 600 درجه سلیسیوس در مقادیر 2 و 4 درصد وزنی، و رطوبت در 2 سطح (غرقاب و رطوبت بیست درصد وزنی) در دو تکرار بود. نمونه¬¬ها با مقادیر 25 و 50 میلی¬گرم کادمیم بر کیلوگرم از منبع نیترات کادمیم آلوده شدند. در زمان¬های 15، 30، 60 و 90 روز کادمیم قابل جذب با عصاره¬گیر DTPA اندازه¬گیری شد. تجزیه واریانس داده‌ها نشان داد که در همه زمان¬ها و هر دو غلظت کادمیم کاربردی برهمکنش بیوچار و رطوبت اثر معنی‌داری بر کادمیم قابل جذب در سطح یک درصد آماری داشت. با گذشت زمان قابلیت جذب کادمیم در همه تیمار¬ها کاهش یافت. بیوچار تهیه شده در دمای 600 درجه سلیسیوس بیشترین تأثیر را بر کاهش قابلیت جذب کادمیم نشان داد و با افزایش سطح مصرف بیوچار قابلیت جذب کادمیم کاهش یافت. در رطوبت 20 درصد وزنی بیوچار دمای 600 کادمیم قابل دسترس کمتری در مقایسه با شرایط غرقاب نشان داد در حالی که در تیمار¬های تفاله پسته، بیوچار دمای 200، 400 روند معکوسی مشاهده گردید.

جزئیات مقاله

مراجع
1. Adriano D.C. 2001. Trace elements in terrestrial environments biogeochemistry, bioavailability, and risks of metals, 2nd ed. New York: Springer. 879 pp.
2. Adriano D.C., Wenzel W.W., Vangronsveld J., Bolan N.S. 2004. Role of assisted natural remediation in environmental cleanup, Geoderma, 122: 121-142.
3. Allison L. E. and Moodie C. D. 1965. Carbonate. In: C. A. Black ed.). Methods of Soil Analysis. part 2. American Society of Agronomy. Madison, WI. 1379-1396.
4. Bagreev, A., Bandosz T.J., Locke D.C. 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer, Carbon, 39: 1971-1979.
5. Beesley, L., and Marmiroli M. 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar, Environmental Pollution, 159: 474-480.
6. Bian, R., Joseph S., Cui L., Pan G., Li L., Liu X., and Donne S. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment, Journal of hazardous materials, 272: 121-128.
7. Bolan N.S., Adriano D. C., Duraisamy P., Mani A., Arulmozhiselvan K. 2003. Immobilization and availability of cadmium in variable charge soils. I. Effect of phosphorus addition, Plant and Soil, 250: 83–94.
8. Bower C.A., Reitemeier R.F., and Fireman M. 1952. Exchangeable cation analysis of saline and alkali soils, Soil Science, 73: 251-261.
9. Chapman H. D., and Pratt D. F. 1961. Methods of Analysis for Soil, Plant, and Water. University of California, Division Agriculture, Soil Science. PP. 60-62.
10. Chen B.L., Zhou D.D., Zhu L.Z. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environmental Science and Technology, 42: 5137-5143.
11. Chen T., Zhang Y., Wang H., Lu W., Zhou Z., Zhang Y., and Ren L. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge, Bioresource Technology: 164, 47-54.
12. Chen Y., Xie T., Liang Q., Liu M., Zhao M., Wang M., Wang G. 2016. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes, Environmental Science and Pollution Research, 23: 7757-7766.
13. Chen, H. M., Zheng C. R., Tu C., and Shen Z. G. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals, Chemosphere, 41: 229-234.
14. Chuan, M. C., Shu G. Y., and Liu J. C. 1996. Solubility of heavy metals in a contaminated soil: effects of redox potential and pH, Water, Air, and Soil Pollution. 90: 543-556.
15. Cui L., Li L., Zhang A., Pan G., Bao D., and Chang A. 2011. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment, Bioresources, 6: 2605-2618.
16. Dabrowski. A. 2004. Selective removal of the heavy metal ions from waters and industrial waste waters by ion-exchange method, Chemosphere, 56: 91-106.
17. De Filippis, P., Palma L.D., Petrucci E., Scarsella M., Verdone N, 2013. Production and characterization of adsorbent materials from sewage sludge by Pyrolysis, Chemical Engineering Transactions, 32: 205-210.
18. Dong D., Yang M., Wang C., Wang H., Li Y., Luo J., Wu W. 2013. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field, Journal of Soils and Sediments, 8: 1450–1460.
19. Fellet G., Marchiol L., Delle Vedove G., and Peressotti A. 2011. Application of biochar on mine tailings: effects and perspectives for land reclamation, Chemosphere, 83(9), 1262-1267.
20. Freitas J. C. C., Cunha A. G., and Emmerich F. G. 1997. Physical and chemical properties of a Brazilian peat char as a function of HTT, Fuel, 76: 229–232.
21. Gee G. W. and Bauder J. W. 1986. Particle- size analysis. In: A. Klute (ed.). Methods of soil analysis, Part 1. Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America. Madison, WI.
22. Gundale, M. J., and DeLuca T. H. 2006. Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem, Forest Ecology and Management, 231: 86–93.
23. Khalid R.A., Gambrell R.P., and Patrick W.H. 1981. Chemical availability of cadmium in Mississippi River sediment, Journal of Environmental Quality, 10: 523-528.
24. Klasson K. T., Boihem Jr., Uchimiya M., Lima I. M. 2014. Influence of biochar pyrolysis temperature and post-treatment on uptake of mercury from flue gas, Fuel Processing Technology, 123: 27-33.
25. Kookana, R. S. 2010. The Role of Biochars in modifying the environmental fate, bioavailability, and efficacy of Pesticides in Soil: A Review, Soil Research, 48: 627-637.
26. Lehmann J. 2007. Bio-energy in the black, Frontiers in Ecology and the Environment, 5: 381-387.
27. Lehmann J., Joseph S. 2009. Biochar for environmental management, Science and Technology, Earthscan Ltd., London, UK.
28. Leonidas L. C., Leonidou C. N., Fotiadis T. A., Zeriti A. 2013. Resources and capabilities as drivers of hotel environmental marketing strategy: Implications for competitive advantage and performance, Tourism Management, 35: 94-110
29. Lindsay W.L. and Norwell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, copper, Soil Science Society of America Journal, 42: 421-428.
30. Loganathan P., Vigneswaran S., Kandasamy J., and Naidu R. 2012. Cadmium sorption and desorption in soils: a review, Critical Reviews in Environmental Science and Technology, 42: 489-533.
31. Lua A. C., Yang T., and Guo J. 2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells, Journal of Analytical and Applied Pyrolysis, 72: 279–287.
32. McBride M. B. 1994. Environmental chemistry of soils, Oxford Univ. Press. New York.
33. Méndez A., Gómez A., Paz-Ferreiro J., Gascó G. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil, Chemosphere, 89: 1354–1359.
34. Misra A. K., Sarkunan V., Das M., and Nayar P. K. 1990. Transformation of added heavy metals in soils under flooded condition, Journal of the Indian Society of Soil Science, 38:416-418.
35. Namgay T., Singh B., and Singh B. P. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.), Soil Research, 48: 638- 647.
36. Nelson D. W and Sommers L. E. 1996. Total carbon, organic carbon and organic matter. In: D. L. Sparks (e.d.). Method of soil analysis, Part 3. American Society Agronomy., Madison, WI.
37. Raicevi S., Kaludjerovic-Radoicic T., and Zouboulis A. I. 2005. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification, Journal of Hazardous Materials, 117: 41-53.
38. Silveira M. L. A., Alleoni L. R. F., and Guilherme L. R. G. 2003. Biosolids and heavy metals in soils, Scientia Agricol, 60: 793-806.
39. Song W., and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperature, Journal of Analytical and Applied Pyrolysis, 94: 138- 145.
40. Uchimiya M., Klasson K.T., Wartelle L.H., Lima I. M. 2011. Influence of soil properties on heavy metal sequestration by biochar amendments: 1. Copper sorption isotherms and the release of cations, Chemosphere, 82: 1431-1437.
41. Wu L., Li Z., Akahane I., Liu L., Han C., Makino T., Luo Y., Christie P. 2012. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola, International Journal of Phytoremediation, 14: 1024–1038.
42. Xiong L. M., Lu R. K. 1993. Effect of liming on plant accumulation of cadmium under upland or flooded conditions, Environmental Pollution, 79: 199-203.
43. Yu X.Y., Ying G.G., Kookana R.S. 2006. Sorption and desorption behaviors of diuron in soils amended with charcoal, Journal of Agricultural and Food Chemistry, 54: 8545-8550.
44. Yuan, J., Xu, R., Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technology, 102: 3488–3497
45. Zhang H., Lin K., Wang H., Gan J. 2010. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene, Environmental Pollution, 158: 2821–2825.
ارجاع به مقاله
افراسیابی ب., ادهمی ا., & اولیایی ح. (2016). تأثیر بیوچارهای تولید شده در دماهای مختلف بر قابلیت جذب کادمیم یک خاک آهکی در شرایط رطوبتی مختلف در طی زمان. آب و خاک, 31(3), 811-821. https://doi.org/10.22067/jsw.v31i2.53258
نوع مقاله
علمی - پژوهشی

مقالات بیشتر خوانده شده از همین نویسنده