دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران

2 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

چکیده

با توجه به اینکه دقت و صحت تمام اطلاعات خاک­شناسی وابسته به بهترین گمانه­زنی در مورد مکان تغییرات خاک­ها در قالب تعیین الگوی نمونه­برداری می­باشد، انتخاب روشی کارآمد که بتواند به بهترین شکل این تغییرات را رصد نماید بسیار حائز اهمیت است. تاکنون مطالعات اندکی در رابطه با بررسی تأثیر تصادفی بودن انتخاب نمونه­ها در روش فرامکعب لاتین بر صحت نقشه­ها انجام شده است. این مطالعه با هدف ارزیابی دقت روش فرامکعب لاتین در انتخاب موقعیت نمونه­برداری به­منظور انجام مطالعات نقشه‌برداری رقومی خاک در منطقه­ای از شهرستان بروجن در استان چهارمحال و بختیاری انجام شد. با توجه به اینکه، چندین مرتبه نمونه­برداری میدانی برای ارزیابی روش نمونه­برداری خاک امری غیرمنطقی است در این پژوهش تلاش گردید تا از روش­های شبیه­سازی بر اساس نقشه­هایی با صحت بسیار بالا برای این منظور استفاده شود. فاصله باهاتاچاریا برای کمّی­سازی فاصله بین توزیع احتمال جامعه اصلی و اجراهای مختلف روش فرامکعب لاتین استفاده گردید. نقشه ویژگی‌های خاک (درصد کربنات کلسیم معادل، رس و کربن آلی) عمق سطحی (صفر تا 30 سانتی­متر) با استفاده از روش ماشین‌بردار پشتیبان تهیه گردید و اعتبارسنجی شد. علاوه بر آن، انتخاب موقعیت نقاط نمونه­برداری با استقاده از روش فرامکعب لاتین با تراکم 200 نقطه با 500 مرتبه اجرا انجام گردید. در هر مرحله، اعتبارسنجی برای پیش­بینی ویژگی­های خاک با استفاده از R2، RMSE و %RMSE انجام شد. نتایج نشان داد که برای تمامی ویژگی­های مورد بررسی، مدل ماشین­بردار پشتیبان از صحت قابل قبولی (%RMSE کمتر از 40) برخوردار می­باشد. از سوی دیگر، نتایج گویای آن است که خروجی­های مختلف روش فرامکعب لاتین در اجراهای مختلف آن بر صحت مدلسازی تأثیرگذار است و مقادیر RMSE مدل در حالت­های مختلف برای درصد کربنات کلسیم معادل، رس و کربن آلی به­ترتیب از 1/1، 1/1 و 02/0 تا 2/3، 2 و 12/0 متغیر است. اگرچه این موضوع متأثر از ویژگی مورد بررسی و میزان تغییرات آن در منطقه مورد مطالعه نیز می­باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluating the Precision of the Conditioned Latin Hypercube Sampling Method for Selecting Soil Samples to Generate Digital Maps of Soil Properties

نویسندگان [English]

  • Z. Mosleh Ghahfarokhi 1
  • A. Azadi 2

1 Soil and Water Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran

2 Soil and Water Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO, Ahvaz, Iran

چکیده [English]

Introduction
Soil properties play a crucial role as they determine the soil's suitability for different types of plant growth, ecosystems, and biota functioning. They have a significant impact on nutrient cycling, carbon sequestration, and soil management. Digital Soil Mapping (DSM) is a process aimed at delineating soil properties. Soil sampling for DSM serves as  a fundamental  step in improving prediction accuracy and is crucial for incorporating variability in terms of environmental covariates. Conditioned Latin Hypercube (CLH) sampling is a technique utilized to generate a sample of points from a multivariate distribution conditioned on one or more covariates. Numerous researchers (Ramirez-Lopez et al., 2014; Adhikari et al., 2017; Zhang et al., 2022) have endorsed this approach in their studies, following its inception by Minasny and McBratney in 2006. However, there has been limited research to date on the impact of the Latin hypercube method's random sample selection process on the accuracy of resulting maps. Hence, the central question remains: Is the Latin hypercube sampling method, which is currently widely adopted, always a dependable approach in this field?
 
Materials and Methods
The study area covers longitudes 50°35'47'' to 51°29'' east and latitudes 31°36''31'' to 32°15'48'' north in Borujen city, Chaharmahal, and Bakhtiari Province. The region, with an average elevation of 2338 meters above sea level, receives an annual rainfall of 250 millimeters and maintains an average temperature of 11.5 degrees centigrade. In this investigation, inherited data from soil studies were utilized, consisting of 250 samples distributed across the study area. In this research, the studied characteristics included percentage of equivalent calcium carbonate, clay, and soil organic carbon at a depth of 0 to 30 cm. Land component variables were extracted using the Alus Palsar digital elevation model with a spatial resolution of 12.5 meters. In the initial stage, digital maps of equivalent calcium carbonate, clay, and soil organic carbon were generated using the support vector machine method. The modeling process proceeded until a highly accurate model was achieved, with the root mean square error percentage (RMSE%) being less than 40. The Latin hypercube approach was utilized for sample design, with 500 repetitions in this study. After selecting sampling points for each run using the Latin hypercube method, these points were mapped onto a detailed map, and the corresponding feature values were retrieved. The final map was created based on the extracted points. Subsequently, the latin hypercube approach was employed to generate soil property maps for each selected dataset. Validation was conducted using criteria such as the coefficient of explanation, root mean square error, and root mean square error in multiple iterations to ensure the accuracy of the generated maps.
 
Results and Discussion
The results distinctly illustrates the varied selection of sampling positions with each implementation of the Latin hypercube method. It is important to note that there may be some overlaps in different implementations. Consequently, the primary question arises: Is a one-time execution of the Latin hypercube sufficient for selecting study points? The findings indicate that the support vector machine model achieves satisfactory accuracy for all the examined characteristics. In the studied area, the environmental factors such as slope and elevation were identified as a significant predictors for estimating percentage of equivalent calcium carbonate.
 
Conclusion
In the present study, the accuracy of the latin hypercube method was assessed for selecting sampling location for digital soil mapping endeavors in Chaharmahal and Bakhtiari Province. Given the impracticality of collecting numerous field samples to evaluate the soil sampling method, this research aimed to employ simulation methods based on highly accurate maps for this purpose. The results indicate that the different outputs of the Latin hypercube method influence the accuracy of modeling, although this effect is also influenced by the specific feature under investigation and the extent of its variability within the study area.  Considering that the Latin hypercube method is based on the principle that samples are randomly selected in each class of environmental parameters, it is suggested that future studies using this method should account for this principle. Adequate consideration should be given, and the selection of sampling locations should rely on multiple implementations of the Bhattacharya distance method to ensure robustness and reliability.

کلیدواژه‌ها [English]

  • Bhattacharyya distance
  • Digital soil mapping
  • Sampling position
  • Support vector machine

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Adhikari, K., & Hartemink, A.E. (2017). Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 10(1), 115–125. https://doi.org/10.1016/j.geodrs.2017.07.003
  2. Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society,35, 99–109.
  3. Brungard, C.W., & Boettinger, J.L. (2010). Conditioned latin hypercube sampling: optimal sample size for digital soil mapping of arid rangelands in Utah, USA. p. 67-75. In: Digital Soil Mapping. Springer, Netherlands.
  4. Brus, D.J. (2019). Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma, 338(1), 464–480. https://doi.org/10.1016/j.geoderma.2018.07.036
  5. Hengl, T., Huvelink, G.B.M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75–93. https://doi.org/10.1016/j.geoderma.2003.08.018
  6. Hengl, T., Rossiter, D.G., & Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, 41(8), 1403-1422. https://doi.org/10.1071/SR03005
  7. Khan, A., Aitkenhead, M., Stark, C.R., & Ehsan Jorat, M. (2023). Optimal sampling using Conditioned Latin Hypercube for digital soil mapping: An approach using Bhattacharyya distance. Geoderma, 439(1), 116660. https://doi.org/10.1016/j.geoderma.2023.116660
  8. Kimble, J.M., Grossman, R.B., & Samson-Liebig, S.E. (2001). Methodology for sampling and preparation for soil carbon determination. p. 15–30. In: Lal, R., J.M. Kimble, R.F. Follett, and B.A. Stewart (eds.) Assessment methods for soil carbon, Lewis Publishers, Boca Raton.
  9. Lame, F.P.J., & Defize, P.R. (1993). Sampling of contaminated soil: Sampling error in relation to sample size and segregation. Environmental Science and Technology, 27(10), 2035–2044.
  10. Ma, T., Brus, D.J., Zhu, A.-X., Zhang, L., & Scholten, T. (2020). Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps. Geoderma, 370(1), 114366. https://doi.org/10.1016/j.geoderma.2020.114366
  11. Markert, B. (2007). Quality assurance of plant sampling and storage. 215-254. In: Quevauviller P (ed.) Qualilty Assurance in Environmental Monitoring: Sampling and Sample Preatreatment. Wiley-VCH, Verlag GmbH, Weinheim.
  12. Minasny, B., & McBratney, A.B. (2006). A Conditioned Latin Hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009
  13. Ramirez-Lopez, L., Schmidt, K., Behrens, T., van Wesemael, B., Dematte, J.A., & Scholten, T. (2014). Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma, 226(1), 140–150. https://doi.org/10.1016/ j.geoderma.2014.02.002
  14. Roudier, P., Beaudette, D.E., & Hewitt, A. (2012). A conditioned Latin hypercube sampling algorithm incorporating operational constraints. p. 227-231. In Minasny B, Malone B P, McBratney A B (eds.) Digital Soil Assessments and Beyond. CRC Press, London.
  15. Thomas, M., Odgers, N.P., Ringrose-Voase, A., Grealish, G., Glover, M., & Dowling, T. (2012). Soil survey design for management-scale digital soil mapping in a mountainous southern Philippine catchment. p. 233-238. In Minasny B, Malone B P, McBratney A B (eds.) Digital Soil Assessments and Beyond. CRC Press, London.
  16. Wadoux, A.M.J.C., & Brus, D.J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/10.1111/ejss.12962
  17. We, X., & Ai, E. (2008). Top 10 algoritm in data mining. Knowledge Information System, 14, 1-37.
  18. Zhang, Y., Saurette, D.D., Easher, T.H., Ji, W., Adamchuk, V.I., & Biswas, A. (2022). Comparison of sampling designs for calibrating digital soil maps at multiple depths. Pedosphere, 32(4), 588–601. https://doi.org/10.1016/ S1002-0160(21)60055-3
  19. Yang, L., Li, X., Shi, J., Shen, F., Qi, F., Gao, B., Chen, Z., Chen, A.X., & Zhou, C. (2020). Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method. Geoderma, 369, 114337. https://doi.org/10.1016/j.geoderma.2020.114337
  20. Yekom Consulting Engineers. (1988). Comprehensive studies on the revival and development of agriculture of the natural resources of the northern watershed of the Karun River.
CAPTCHA Image