فرزاد مندنی


به منظور واسنجی و ارزیابی مدل CERES-Maize در شبیه¬سازی تولید ذرت تحت شرایط کاربرد مقادیر مختلف کود نیتروژن آزمایشی به صورت کرت‏های خرد شده در قالب طرح پایه بلوک¬های کامل تصادفی با 4 تکرار در کرمانشاه در سال 1393 اجرا شد. تیمارها شامل کود نیتروژن (صفر، 138، 238، 350 و 483 کیلوگرم اوره در هکتار) به¬عنوان کرت‏های اصلی و ارقام ذرت 704SC-، 678BC- و سیمون به¬عنوان کرت‏های فرعی بودند. ضرایب ژنتیکی ارقام توسط بخش محاسبه ضرایب ژنتیکی برای تیمار 350 کیلوگرم اوره در هکتار محاسبه شد. نتایج واسنجی نشان داد، مدل قادر است با حداقل اختلاف، ویژگی¬های رشد و نمو را برای ارقام ذرت شبیه¬سازی کند که بیانگر دقت بالای ضرایب ژنتیکی محاسبه شده بود. نتایج ارزیابی¬های مدل نشان داد که میزان nRMSE وزن خشک کل در ارقام 704SC-، 678BC- و سیمون به ترتیب، 2/6، 2/8 و 8/5 درصد میانگین مشاهده¬ها بود. میزان nRMSE عملکرد دانه نیز برای ارقام 704SC-، 678BC- و سیمون به ترتیب، 3/4، 4/11 و 1/8 درصد میانگین مشاهده¬ها بود. هم در شرایط شبیه-سازی و هم در شرایط مزرعه با افزایش میزان کود نیتروژن از صفر به 138، 238، 350 و 483 کیلوگرم اوره در هکتار شاخص سطح برگ، عملکرد وزن خشک کل و عملکرد دانه ارقام ذرت افزایش یافت. رقم سیمون در مقایسه با سایر ارقام از عملکرد دانه بیشتری برخوردار بود. بطورکلی نتایج نشان داد که مدل CERES-Maize قادر بود واکنش ارقام ذرت نسبت به تغییرات نیتروژن را با دقت بالایی پیش¬بینی کند.

جزئیات مقاله

1- Abdian A., Rahimzade Khoei F., Anvari Savojbolagh K., and Rahimzada S. 2010. Evaluation of yield and yield components of early maturing maize in the second cropping. 11th Agronomy and Crop Breeding Congress. Tehran's Shahid Beheshti University, Iran. (in Persian with English abstract).
2- Amiri E., Rezaei M., Bannayan M., and Soufizadeh S. 2013. Calibration and Evaluation of CERES Rice Model under Different Nitrogen- and Water-Management Options in Semi-Mediterranean Climate Condition. Communications in Soil Science and Plant Analysis, 44: 1814-1830.
3- Bannayan M., Crout N.M.J., and Hoogenboom G. 2003. Application of the CERES-Wheat model for within-season prediction of winter wheat yield in theUnited Kingdom. Agronomy Journal, 95:114-125.
4- Cassman K.G., Dobermann A., Walters D.T., and Yang H. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28: 315-358.
5- Chisanga C.B., Phiri E., Shepande C., and Sichingabula H. 2015. Evaluating CERES-Maize Model Using Planting Dates and Nitrogen Fertilizer in Zambia. Journal of Agricultural Science, 7: 79-97.
6- Dehghanpoor Z. 2014. Technical instructions planting and harvesting of corn (grain and forage). Agricultural Training Press.
7- FaridH.U., Bakhsh A., Mahmood-Khan Z., Ahmad N., and Ahmad A. 2015. Calibration and Validation of CERES-Wheat (Triticum Aestivum) Model for Simulating Fertilizer Application Rates in Management Zones. Journal of Agricultural Science, 7: 115-127.
8- Gulser F. 2005. Effect of ammonium sulphate and urea on NO3 and NO2 accumulation nutrient contents and yield criteria in spinach. Scientia Horticulture, 106: 330-340.
9- Hoogenboom G., Jones J.W.P., Wilkens W., Porter C.H., Boote K.J., Hunt L.A., Singh U., Lizaso J.I., White J.W., Uryasev O., Ogoshi R., Koo J., Shelia V., and Tsuji G.Y. 2015. Decision Support System for Agrotechnology Transfer (DSSAT) Version4.6 (http://dssat.net). DSSAT Foundation, Prosser, Washington.
10- Jones C.A., and Kiniry J.R. 1986. CERES-Maize: A Simulation Model of Maize Growth and Development Texas A&M University Press, College Station, TX, USA.
11- Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., and Ritchie J.T. 2003. DSSAT Cropping System Model. European Journal of Agronomy, 18: 235‐265.
12- Liu S., Yang J.Y., Zhang X.Y., Drury C.F., Reynolds W.D., and Hoogenboom G. 2013. Modelling crop yield, soilwater content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China.Agricultural Water Management, 123: 32-44.
13- Liu H.L., Yang J.Y., Drury C.F., Reynolds W.D., Tan C.S., and Bai Y.L., et al., 2011. Usingthe DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling infields under long-term continuous maize production. Nutrient Cycling in Agroecosystems, 89: 313-328.
14- Lopez-Cedron F.X., Boote K.J., Piñeiro J., and Sau F. 2008. Improving the CERES-Maize modelability to simulate water deficit impact on maizeproduction and yield components. Agronomy Journal, 100: 296-307.
15- Mahru A.H., Soltani A., Galeshi S., and Kalate-Arabi M. 2010. Estimates of genetic coefficients and evaluation of model DSSAT for Golestan province.Elecronic Journal of Crop Production, 3: 229-253. (in Persian with English abstract).
16- Nouna B.B., Katerji N., and Mastrorilli M. 2003. Using the CERES-Maize model in a semi-arid Mediterranean environment: New modeling of leaf area and water stress functions. European Journal of Agronomy, 19: 115-123.
17- Nouna B.B., Katerji N., and Mastrorilli M. 2000. Using the CERES-Maize model in a semi-arid Mediterranean environment. Evaluation of model performance. European Journal of Agronomy, 13: 309-322.
18- Rabie M., Mirlatifi S.M., and Gheysari M. 2012. Calibration and Evaluation of the CSM-CERES-MAIZE Model for Maize Hybrid 704 Single-Cross in Varamin. Journal of Water and Soil, 26: 290-299. (in Persian with English abstract).
19- Ritchie J.T., Singh U., Godwin D.C., and Bowen W.T. 1998. Cereal growth, development, and yield.p. 79-98. InTsujiG.Y. et al. (ed.). Understanding Options for Agricultural Production. Kluwer Academic Publishing, Dordrecht, The Netherlands.
20- Soltani A., Robertson M.J., Mohammad-Nejad Y., and Rahemi-Karizaki A.2006. Modeling chickpea growth and development: leaf production andsenescence. Field Crop Research, 99: 14-23.
21- Soltani A., and Hoogenboom G. 2007. Assessing crop management options with cropsimulation models based on generated weather data. Field Crop Research, 103: 198-207.
22- Ting L.Z., Yang J.Y., Drury C.F., and Hoogenboom G. 2015. Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135: 90-104.
23- Tojo Soler C.M., Sentelhas P.C., and Hoogenboom G. 2007. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27: 165-177.
24- White J.W. 2003. Modeling Temperature Response in Wheat and Maize: Proceedings of aWorkshop, CIMMYT, El Batán, Mexico, 23-25 April 2001. NRG-GIS Series 03-01. México, D.F.: CIMMYT.
25- Willmott C.J. 1982. Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63: 1309-1313.
26- Yang Z., Wilarkson G.G., Buol G.S., Bowman D.T., and Heiniger R.W. 2009. Estimating Genetic Coefficients for the CSM-CERES-Maize model in North Carolina environments. Agronomy Journal, 101: 1276-1285.
27- Yang J.M., Yang J.Y., Dou S., Yang X.M., and Hoogenboom G. 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutrient Cycling in Agroecosystems, 95: 287-303.
28- Yang J.M., Yang J.Y., Liu S., and Hoogenboom G. 2014. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127: 81-89.
ارجاع به مقاله
مندنیف. (2017). شبیه¬سازی اثر کود نیتروژن بر تولید ذرت (Zea maize) توسط مدل CERES-Maize تحت شرایط اقلیمی کرمانشاه. آب و خاک, 31(6), 1665-1678. https://doi.org/10.22067/jsw.v31i6.61895
نوع مقاله
علمی - پژوهشی