دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 فردوسی مشهد

چکیده

به‌دلیل واکنش فسفر با ترکیبات موجود در خاک، فراهمی فسفر به‌عنوان یک فاکتور محدود‌کننده برای تولید فرآورده‌های کشاورزی در سراسر جهان مطرح است. این پژوهش با هدف مقایسه تاثیر ترکیب سنتزی هیدروکسید مضاعف لایه‌ای (LDH) با آنیون بین لایه ای فسفات و کود شیمیایی سوپر فسفات تریپل (TSP) بر فراهمی فسفر یک خاک آهکی در طی زمان انجام شد. به این منظور ابتدا Zn-Al LDH با آنیون بین‌لایه‌ای فسفات (P-LDH) به روش تبادل یونی ساخته شد و سپس یک آزمایش انکوباسیون در قالب طرح کاملاً تصادفی با آرایش فاکتوریل دربرگیرنده دو ترکیب حاوی فسفر (P-LDH و TSP)، چهار سطح فسفر (صفر (شاهد)، 18، 45 و 90 میلی‌گرم فسفر بر کیلوگرم)، 8 زمان (1، 5، 10، 20، 40، 70، 100 و 150 روز) و سه تکرار انجام شد. در پایان هر زمان مقادیر فسفر و روی قابل دسترس، pH و هدایت الکتریکی (EC) نمونه‌ها اندازه‌گیری گردید. نتایج نشان داد که کاربرد P-LDH و TSP منجر به افزایش معنی‌دار فسفر قابل دسترس در مقایسه با تیمار شاهد گردید اما روند تغییرات رهاسازی فسفر در این دو منبع با گذشت زمان متفاوت بود. در نمونه‌های P-LDH برخلاف TSP با گذشت زمان فسفر قابل دسترس افزایش یافت تا آن‌جا که تفاوت میان این دو منبع در هر سه سطح فسفر در زمان 150 روز از نظر آماری معنی‌دار گردید. این امر احتمالا به‌دلیل رهاسازی آهسته فسفر از ساختمان P-LDH و کاهش واکنش فسفر با ترکیبات خاک رخ داده است. در اثر انحلال ترکیب P-LDH در خاک هم‌زمان با آنیون فسفر کاتیون روی هم وارد محلول خاک شد که منجر به افزایش قابل توجه روی قابل دسترس خاک در تیمارهای P-LDH گردید. همچنین نتایج نشان داد که تغییرات pH و EC در هر دو منبع یکسان بوده و تفاوت معنی‌داری میان دو منبع مشاهده نشد. بنابراین به‌نظر می‌رسد که P-LDH می‌تواند به‌عنوان یک کود کندرهای فسفره سبب افزایش کارایی فسفر گردد اما سطوح بالای این ترکیب به‌دلیل بالا بودن مقادیر روی قابل دسترس توصیه نمی‌شوند.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Layered Double Hydroxide with Phosphate as the Interlayer Anion on the Availability of Phosphorus in a Calcareous Soil

نویسندگان [English]

  • Hadis Hatami 1
  • Amir Fotovat 2
  • Akram Halajnia 2

1 Ferdowsi University of Mashhad

2 Ferdowsi University of Mashhad

چکیده [English]

Introduction: After nitrogen, phosphorus is the second most frequently limiting macronutrient for plant growth. It participates in metabolic processes such as photosynthesis, energy transfer and synthesis and breakdown of carbohydrates. H2PO4- and HPO42- are two forms of this element which are present in the soil solution in the available form. Due to phosphorus reactions with soil components (oxy or hydroxides of Fe and Al in acidic soils and Ca2+ and Mg2+ ions in calcareous soils), the availability of this element is a limiting factor for production of agricultural crops in the whole world. To minimize this problem it is needed to improve the recycling of phosphorus and develop new technologies to reduce phosphorus losses and increase its effectiveness. In the recent decades, layered double hydroxides (LDH) have been extremely used as an effective sorbent for organic and inorganic anions sush as phosphate. Furthermore, some studies have suggested that the phosphate form LDH is applicable as a slow release phosphate fertilizer. Therefore, the objective of the present study was to compare the effect of using Zn-Al LDH and triple superphosphate (TSP) as fertilizers on the availability of phosphorus over time in a calcareous soil.
Materials and Methods: At the first, nitrate containing Zn-Al LDH (N-LDH) was synthesized by urea hydrolysis method and then ion exchange method was used for the phosphate anions intercalation into N-LDH. In this process, 5.0 g of the N-LDH was suspended in 1000 mL of a solution 0.05 mol/L of K2HPO4. The suspension was kept for 12 h at room temperature (25 °C) under stirring. Afterwards, the material was filtered, washed with distilled water and dried at 70 °C for 18 h. The LDH sample produced by the ion exchange method was nominated as P-LDH. To compare the effects of P-LDH and TSP application on the availability of soil phosphorus, an incubation experiment was carried out using a completely randomized factorial design with two sources of phosphorus (P-LDH and TSP), four levels of phosphorus (0 (control), 18, 45 and 90 mg P kg-1), eight levels of time (1, 5, 10, 20, 40, 70, 100 and 150 days) and three replications. Available phosphorus and zinc, pH and EC of samples were measured at the end of each time period. Available phosphorus was extracted with 0.5 M sodium bicarbonate and phosphorus concentration was determined using the ascorbic acid method. Available zinc content was determined by atomic absorption spectrometry following extraction of the sample by DTPA-TEA method. Also, pH and EC were measured in water (soil/water ratio 1:2). Data analysis was performed by MSTAT-C software, and the means were compared at α꞊5% by Duncan test.
Results and Discussion: The results showed that the use of P-LDH and TSP significantly improved available phosphorus compared to control treatment. However, in contrast to TSP, available phosphorus in P-LDH treatments increased with increasing of time, up to significant difference which was observed between the two sources after 150 days. This result is probably due to slow release of phosphorus from P-LDH and reduction of phosphorus reactions with different soil components. Moreover, available zinc was higher for P-LDH treatments than TSP treatments as dissolution of P-LDH may concurrently release zinc ions into the soil solution. It seems that the application of P-LDH not only increased the availability of phosphorus but also improved available zinc. Therefore, due to the zinc deficiency in calcareous soils, P-LDH can be used as a suitable dual purpose fertilizer for these soils. However, the possibility of Zn toxicity risk due to higher level of LDH application in soil is not ruled out. It is worth mentioning that the variation of pH and EC values in P-LDH treatments showed no significant difference compared to TSP tratments. In other words, application of P-LDH increased soil available phosphorus and zinc without any negative effect on soil pH and EC.
Conclusions: The results of this study illustrated that the P-LDH probably can be used as a slow release phosphate fertilizer to increase the phosphorus efficiency; however, care should be taken as the high levels of this fertilizer may not be recommended due to the high zinc content. It should be noted that the high levels of phosphorus are not appropriate for all phosphorus fertilizers but in the present study we used the different levels of fertilizers because the behavior of P-LDH was not clear for us.

کلیدواژه‌ها [English]

  • Available phosphorus
  • Layered double hydroxide
  • Slow release fertilizer
  • triple superphosphate
1- Afif E., Matar A., and Torrent J. 1993. Availability of phosphate applied to calcareous soils of West Asia and North Africa. Soil Science Society of America Journal, 57:756-760.
2- Biling W., Zhengmiao X., Jianjun C., Juntao J., and Qiufeng S. 2008. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining taing contaminated soil. Journal of Environmental Sciences, 20:1109-1117.
3- Boukhalfa-Deraoui N., Hanifi-Mekliche L., and Mihoub A. 2015. Effect of incubation period of phosphorus fertilizer on some properties of sandy soil with low calcareous content, southern Algeria. Asian Journal of Agricultural Research, 9:123-131.
4- Bruna F., Pavlovic I., Barriga C., Cornejo J., and Ulibarri M.A. 2006. Adsorption of pesticides Carbetamide and Metamitron on organohydrotalcite. Applied Clay Science, 33:116-124.
5- Bruna F., Pavlovic I., Barriga C., Cornejo J., and Ulibarri, M.A. 2008. Organohydrotalcites as novel supports for the slow release of the herbicide terbuthylazine. Applied Clay Science, 42:194-200.
6- Castro B., and Torrent J. 1995. Phosphate availability in calcareous Vertisols and Inceptisols in relation to fertilizer type and soil properties. Fertilizer Research Journal, 40:109-119.
7- Cheng X., Huang X., Wang X., and Sun D. 2010. Influence of calcination on the adsorptive removal of phosphate by Zn–Al layered double hydroxides from excess sludge liquor. Journal of Hazardous Materials, 177:516-523.
8- Cheng X., Wang Y., Sun Z., Sun D., and Wang A. 2013. Pathways of phosphate uptake from aqueous solution by ZnAl layered double hydroxides. Water science and technology, 67.8:1757-1763.
9- Chitrakar R., Tezuka S., Sonoda A., Sakane K., Ooi K., and Hirotsu T. 2005. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. Journal of Colloid and Interface Science, 290:45-51.
10- Corwin D.L., and Lesch S.M. 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46:11-43.
11- Damodar Reddy, D., Subba Rao, A., Sammi Reddy, K., and Takkar, P.N. 1999. Yield sustainability and phosphorus utilization in soybean–wheat system on Vertisols in response to integrated use of manure and fertilizer phosphorus. Field Crops Research, 62:181-190.
12- Das J., Patra B.S., Baliarsingh N., and Parida K.M. 2006. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science, 32:252-260.
13- De Roy A. 1998. Lamellar double hydroxides. Molecular Crystals and Liquid Crystals, 311:173-193.
14- Dodd R.J., McDowell R.W., and Condron L.M. 2013. Changes in soil phosphorus availability and potential phosphorus loss following cessation of phosphorus fertiliser inputs. Soil Research, 51:427–436.
15- Entry J.A., Hubbard R.K., Thies J.E., and Fuhrmann J.J. 2000. The Influence of Vegetation in Riparian Filterstrips on Coliform Bacteria: II. Survival in Soils. Reprinted from the Journal of Environmental Quality, 29: 1215-1224.
16- Forano C., Hibino T., Leroux F., and Taviot-Gueho C. 2006. Layered double hydroxides. p. 1021-1095 In: F. Bergaya, B.K.G. Theng, G. Lagaly (eds). Handbook of clay science.Elsevier Ltd.
17- Frey B., Rieder S.R., Brunner I., Plotze M., Koetzsch S., Lapanje A., Brandl H., and Furrer G. 2010. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Applied and environmental microbiology, 76: 4788-4796.
18- Füleky Gy. 1978. Available phosphorus content of soil affected by P fertilization and its change in time. Communications in Soil Science and Plant Analysis. 9:851-863.
19- Goh K.-H., Lim T.T., and Dong Z. 2008. Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 42: 1343-1368.
20- Grover K., Komarneni S., and Katsuki H. 2010. Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake. Applied Clay Science, 48:631-637.
21- Gulser C., Demir Z., and Ic S. 2010. Changes in some soil properties at different incubation periods after tobacco waste application. Journal of Environmental Biology, 31: 671-674.
22- Halajnia A., Oustan S., Najafi N., Khataee A.R., and Lakzian A., 2013. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Applied Clay Science, 80–81:305-312.
23- Halford, I.C.R., and Patrick J.R. 1979. Effect of reduction and pH changes on phosphate sorption and mobility in an acid soil. Soil Science Society of American Journal, 43:292-297.
24- Hettiarachchi G.M., and Pierzynski G.M. 2002. In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. Journal of Environmental Quality, 31:564–572.
25- Hosni K., and Srasra E. 2010. Evaluation of Phosphate Removal from water by calcined-LDH synthesized from the dolomite. Colloid Journal, 72:423–431.
26- Inayat A., Klumpp M., and Schwieger W. 2011. The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion. Applied Clay Science 51:452–459.
27- Isaacs-Paez E.D., Leyva-Ramos R., Jacobo-Azuara A., Martinez-Rosales J.M., and Flores-Cano J.V., 2014. Adsorption of boron on calcined AlMg layered double hydroxide from aqueous solutions: Mechanism and effect of operating conditions. Chemical Engineering Journal, 245:248-257.
28- Koilraj P., and Srinivasan K., 2011. High sorptive removal of borate from aqueous solution using calcined ZnAl layered double hydroxides. Industrial & Engineering Chemistry Research, 50:6943-6951.
29- Koilraj P., Antonyraj C.A., Gupta V., Reddy C.R.K., and Kannan S. 2013. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Applied Clay Science 86:111–118.
30- Komarneni S., Newalkar B.L., Li D., Gheyi T., Lopano C.L., Heaney P.J., and Post J.E. 2003. Anionic clays as potential slow-release fertilizers: Nitrate ion exchange. Journal of Porous Materials, 10:243-248.
31- Laboski C.A.M., and Lamb J.A. 2003. Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil Science Society of America Journal, 67:544-554.
32- Lambert R., Grant C., and Sauve S. 2007. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Science of the Total Environment, 378:293–305.
33- Lewis D.C., Sale P.W.G., and Johnson D. 1997. Agronomic effectiveness of a partially acidulated reactive phosphate rock fertilizer. Australian Journal of Experimental Agriculture, 37:985 -93.
34- Li Y., Gao B., Wu T., Sun D., Li X., Wang B., and Lu F. 2009. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Resarch, 43:3067–3075.
35- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42:421-428.
36- Long F., Guang J., Zeng G., Chen L., Wang X., Deng J., Niu Q., Zhang H., and Zhang X. 2011. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chemical Engineering Journal, 171:448-455.
37- Lv L., Sun P., Wang Y., Du H., and Gu T. 2008. Phosphate removal and recovery with calcined layered double hydroxides as an adsorbent. Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 519–526.
38- Mirseyed Hosseini H., Khayami S., Besharati H., and Bybordi S. 2010. Study of the effects of rock phosphate application with phosphate solubilizing bacteria on P availability for corn. p. 261-263. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 Aug. 2010, Brisbane, Australia.
39- Mueller T.G., Hartsock N.J., Stombaugh T.S., Shearer S.A., Cornelius P.L., and Barnhisel and R.I. 2003. Soil electrical conductivity map variability in limestone soils overlain by loess. Agronomy Journal, 95:496-507.
40- Murphy J., and Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27:31-36.
41- Neher D.A., Barbercheck M.E., El-Allaf S.M., and Anas O. 2003. Effects of disturbance and ecosystem on decomposition. Applied Soil Ecology 23: 165-179.
42- Olsen S.R., Cloe V., Watnebe F.S., and Pean L.A. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA, 939 USA.
43- Samadi A., and Gilkes R. J. 1999. Phosphorus Transformations and their relationships with calcareous soil properties of south Western Australia. Soil Science Society of America Journal, 63:809-815.
44- Schachtman D.P., Reid R.J., and Ayling S.M. 1998. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, 116:447-453.
45- Toor G.S., and Bahl G.S. 1997. Effect of solitary and integrated use of poultry manure and fertilizer phosphorus on the dynamics of P availability in different soils. Bioresource Technology, 62:25-28.
46- Torres-Dorante L.O., Lammel J., Kuhlmann H., Witzke T., and Olfs H.-W. 2008. Capacity, selectivity, and reversibility for nitrate exchange of a layered double-hydroxide (LDH) mineral in simulated soil solutions and in soil. Journal of Plant Nutrition and Soil Science, 171:777-784.
47- Walker, T.W., and Adams, A.F.R., 1958. Ignition method. In: Klute, A. (Ed), Methods of Soil Analysis: Physical Properties, Part 1, second ed. Agron Monogr, No 9. Madison WI: ASA and SSSA., pp. 403–430.
48- Wang J., and Harrell D.L. 2005. Effect of ammonium, potassium, and sodium cations and phosphate, nitrate, and chloride anions on zinc sorption and lability in selected acid and calcareous soils. Soil Science Society of America Journal, 69:1036-1046.
49- Wang W., Zhou J., Achari G., Yu J., and Cai W. 2014. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457:33-40.
50- Woo M.A., Kim T.W., Paek M., Ha H., Choy J., and Hwang S. 2011. Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate. Journal of Solid State Chemistry, 184:171-176.
51- Yu Q., Zheng Y., Wang Y., Shen L., Wang H., Zheng Y., He N., and Li Q. 2015. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: Assembling hydrogen bond acceptor sites. Chemical Engineering Journal, 260:809-817. 45.
CAPTCHA Image