دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه شهرکرد

چکیده

انتخاب دقیق ارقام گیاهی مناسب به منظور حصول سازگاری مطلوب با محیط و آلاینده‌ی خاص، یک استراتژی مهم جهت موفقیت در فن‌آوری گیاه‌پالایی محسوب می‌شود. آفتابگردان از جمله گیاهانی است که به دلیل برخورداری از رشد سریع و بیوماس بالا، همواره گیاهی مناسب جهت جذب و استخراج فلزات سمی از خاک‌های آلوده محسوب می‌شود. به منظور ارزیابی کارآیی شش رقم آفتابگردان در استخراج‌گیاهی فلز سنگین سرب از یک خاک حاوی سرب، این آزمایش در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه‌ی تحقیقاتی دانشگاه شهرکرد به اجرا در آمد. ارقام مورد استفاده در این آزمون شامل آلستار، هایسان 33، سیرنا، سانبرا، رکورد و ایروفلور بودند. نتایج نشان داد که میان ارقام آفتابگردان از لحاظ غلظت سرب اندام هوایی، فاکتور انتقال و کل سرب برداشت شده توسط اندام هوایی، اختلاف معنی‌داری در سطح احتمال 1 درصد وجود داشت. به‌طورکلی، به دلیل آنکه فاکتور انتقال تمامی ارقام مورد مطالعه در این آزمون کمتر از یک بود، می‌توان اظهار داشت که هیچ یک از ارقام کارآیی مناسبی جهت استخراج سرب از خاک آلوده نداشتند. با این وجود، بالا بودن غلظت سرب ریشه‌ی این ارقام و در عین حال اندک بودن فاکتور انتقال آن‌ها بیانگر آن است که کارآیی ارقام مورد مطالعه جهت استفاده در تکنیک تثبیت‌گیاهی بیشتر از تکنیک استخراج‌گیاهی است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation the Efficiency of Six Sunflower Cultivars in Phytoextraction of Lead from a Pb-bearing Soil for Long Term

نویسندگان [English]

  • Mohammad Reza Naderi 1
  • A. Danesh-Shahraki 2
  • F. Raiesi 2

1

2 Shahrekord University

چکیده [English]

The right selection of an appropriate cultivar, which can be adapted with a particular pollutant and environmental conditions, is a crucial factor for a successful phytoremediation technology. Sunflower might be a suitable plant to remove the toxic metals from soil of polluted sites due to its rapid growth and high biomass production. In order to evaluate the efficiency of six sunflower cultivars in lead (Pb) phytoextraction from a contaminated soil, an experiment was carried out using a completely randomized design with three replications in Research Station of Shahrekord University. Sunflower cultivars used in this experiment were Alestar, Serena, Sanburu, Hysun 33, Record and Euroflor. Results showed that there was a significant difference in shoot lead concentration, translocation factor and total lead harvested by shoot among sunflower cultivars at 1% probability level. Generally, due to translocation factor of all cultivars was less than 1, this can be stated that none of cultivars had the proper efficiency for extraction of lead from contaminated soil. However, high root lead concentration and low translocation factor of these cultivars show that efficiency of them for use in phytostabilization technique is more than phytoextraction technique.

کلیدواژه‌ها [English]

  • Heavy metals
  • Soil pollution
  • phytoremediation
  • translocation factor
  • phytostabilization
1- فتاحی کیاسری ا.، فتوت ا.، آستارایی ع. و ‌حق‌نیا غ. 1389. اثر اسید سولفوریک و EDTAبر گیاه‌پالایی سرب در خاک توسط سه گیاه آفتابگردان، ذرت و پنبه. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک 51: 68-57.
2- متشرع زاده ب. و ثواقبی غ. 1390. بررسی پاسخ های آفتابگردان به سمیت کادمیوم و سرب با کاربرد باکتریهای محرک رشد گیاه در یک خاک آهکی. نشریه آب و خاک. 25 (5): 1079-1069.
3- نجفی ن.، مردمی س. و اوستان ش. 1390. اثر غرقاب، لجن فاضلاب و کود دامی بر غلظت فلزات سنگین در ریشه و بخش هوایی آفتابگردان در یک خاک شن لومی. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک 58: 156-139.
4- Alloway B.J. 1995. Soil Processes and the Behaviour of Heavy Metals. p. 11-37. In: B.J. Alloway (ed) Heavy Metals in Soils. Blackie Academic and Professional, London.
5- Baker A.J.M., and Walker P.L. 1990. Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in plants. p. 155-177. In: A.J. Shaw (ed) Evolutionary Aspects. CRC Press, Boca Raton.
6- Boonyapookana B., Parkpian P., Techapinyawat S., Delaune R.D., and Jugsujinda A. 2005. Phytoaccumulation of lead by Sunflower (Helianthus annus), Tobacco (Nicotianatabacum), and Vetiver (Vetiveriazizanioides). Journal of Environmental Science and Health, 40: 117-137.
7- Chany R.L., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S., and Baker A.J.M. 1997. Phytoremediation of soil metals. Environmental Biotechnology, 8: 279-284.
8- Di Gregorio S., Barbafieri M., Lampis S., Sanangelantoni A.M., Tassi E., and Vallini G. 2006. Combined application of Triton X-100 and Sinorhizobium sp. P002 inoculum for the improvement of lead phytoextraction by Brassicajuncea in EDTA amended soil. Chemosphere, 63: 293-299.
9- Gawronski S.W. and Gawronska H. 2007. Plant taxonomy for phytoremediation. p. 79-88. In: N. Marmiroli et al. (Eds), Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents. Springer.
10- Ghosh M. and Singh S.P. 2005. A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3: 1-18.
11- Hanlon E.A. 1997. Elemental Determination By Atomic Absorption Spectrophotometry. P. 285. In: Y.P. Kalra (ed), Handbook of Reference Methods for Plant Analysis. CRC Press.
12- Herrero E.M., Lopez-Gonzalvez A., Ruiz M.A., Lucas-Garcia J.A., and Barbas C. 2003. Uptake and distribution of zinc, cadmium, lead and copper in Brassicanapus var. oleifera and Helianthusannuus grown in contaminated soils. International Journal of Phytoremediation, 5: 153-167.
13- Jadia C.H. and Fulekar M.H. 2008. Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nikel and lead by sunflower Plant. Environmental Engineering and Management Journal, 7: 547-558.
14- Keller C., Hammer D., Kayser A., Richner W., Brodbeck M., and Sennhauser M. 2003. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant and Soil, 249: 67-81.
15- Lasat M.M. 2002. Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, 31: 109-120.
16- Lin C., Liu J., Liu L., Zhu T., Sheng L. and Wang D. 2009. Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 65: 410-416.
17- Liu J.G., Li K.Q., Xu J.K., Zhang Z.J., Ma T.B., Lu X.L., Yang J.H., and Zhu Q.S. 2003. Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165: 793-802.
18- Madejon P., Murillo J.M., Maranon T., Cabrera F., and Soriano M.A. 2003. Trace element and nutrient accumulation in sunflower plants two years after the Aznac´ollar mine spill. Science of Total Environment,307: 239-257.
19- Majer B.J., Tscherko D., and Paschke A. 2002. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research, 515: 111-124.
20- Moteshare Zadeh B., Savaghebi-Firozabadi G.R., Alikhani H.A., and MirseyedHosseini H. 2008. Effect of sunflower and amaranthus culture and application of inoculants on phytoremediation of the soils contaminated with Cadmium. American-Eurasian Journal of Agricultural and Environmental Science, 4: 93-103.
21- Nandakumar P.B.A., Dushenkov V., Motto H., and Raskin I. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29: 1232-1238.
22- Nehnevajova E., Herzig R., Federer G., and Erismann K.H. 2005. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. International Journal of Phytoremediation, 7: 337-349.
23- Peer W., Baxter I., Richards E., Freeman J., and Murphy A. 2005. Phytoremediation and hyperaccumulator plants. 14: 299-340. In: M. Tamas, E. Martinoia, (eds), Topics in Current Genetics, Molecular Biology of Metal Homeostasis and Detoxification. Springer, Berlin.
24- Safari Sinegani A.A., and Khalilikhah F. 2008. Phytoextraction of lead by Helianthus annuus: effect of mobilizing agent application time. Plant, Soil and Environment, 54: 434-440.
25- Tandy S., Schulin R., Nowack B. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62: 1454-1463.
26- Vassilev A., Schwitzguebel J.P., Thewys T., van der Lelie D., and Vangronsveld J. 2004. The use of plants for remediation of metal-contaminated soils. Scientific World Journal, 4: 9-34.
27- WHO. 1997. Health and environment in sustainable development. WHO. Geneva.
28- Ximenez-Embun P., Madrid-Albarran Y., Camara C., Cuadrado C., Burbano C., and Muzquiz M. 2001. Evaluation of Lupinus species to accumulate heavy metals from waste waters. International Journal of Phytoremediation, 3: 369-379.
CAPTCHA Image