1- Allison L.E. 1965. Organic carbon. p.1372-1376. In: C.A. Black et al.(eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI.
2- Allison L.E., and Moodie C.D. 1965. Carbonate. p.1379-1396. In: C.A. Black et al.(eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI.
3- Arau´jo M.S.B. Schaefer C.E.R., and Sampaio E.V.S.B. 2004. Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma, 119: 309–321.
4- Bowma R.A., Reeder J.D., and Lober, R.W. 1990. Changes in soil properties in a central plains rangeland soil after 3, 20, and 60 years of cultivation. Soil Science, 150: 851– 857.
5- Brady N.C., and Weil R.R. 2008. Nature and Properties of Soils, 14th edn. Prentice Hall, Upper Saddle River, NJ, USA.
6- Chapman H.D. 1965. Cation exchange capacity. p.891-90. In: C.A. Black et al. (eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI.
7- Compton J.E., and Boone R.D. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology, 81: 2314–2330.
8- Condron L.M., Frossard E., Tiessen H., Newman R.H., and Stewart J.W.B. 1990. Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. Journal of Soil Science, 41: 41–50.
9- Crews T.E. 1996. The supply of phosphorus from native, inorganic phosphorus pools in continuously cultivated Mexican agroecosystems. Agriculture, Ecosystems and Environment, 57:197– 208.
10- Day P.R. 1965. Particle fractionation and particle size analysis. p.545-567. In: C.A. Black et al. (eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI.
11- de Assis C.P., de Oliveiraa T.S., Dantas J.N., and de Sa Mendonça E. 2010. Organic matter and phosphorus fractions in irrigated agroecosystems in a semi-arid region of Northeastern Brazil. Agriculture, Ecosystems and Environment, 138:74–82.
12- Dehghan R., Shariatmadari H., and Khademi H. 2008. Soil phosphorus forms in four toposequences of Isfahan and Shahrekord regions. Journal of Water and Soil Science, 11 (42):463-472. (in Persian).
13- Delgado, A. and Torrent, J. 2000. Phosphorus forms and desorption in heavily fertilized calcareous and limed acid soils. Soil Science Society American Journal, 64:2031-2037.
14- Guggenberger G., Christensen B.T., Rubæk G., and Zech W. 1996. Land-use and fertilization effects on P forms in two European soils: resin extraction and 31P-NMR analysis. European Journal of Soil Science, 47: 605–614.
15- Harrel D.L., and Wang J.J. 2006. Fractionation and sorption of inorganic phosphorus in Louisiana calcareous soils. Soil Science, 171:39-51.
16- Kuo S. 1996. Phosphorus. p.869-920, In: D. L. Sparks (eds.), Methods of Soil Analysis, Part 3 SSSA; Book Ser. 5 SSSA, Madison.
17- Lee C.H., Park C.Y., Park K.D., Jeon W.T., and Kim P.J. 2004. Long-term effects of fertilization on the forms and availability of soil phosphorus in rice paddy. Chemosphere, 56: 299–304.
18- Lilienfein J., Wilcke W., Ayarza M.A., Vilela L., Lima A.C., and Zech W. 2000. Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use. Geoderma, 96: 31–46.
19- Litaor M.L., Reichmann O., Auerswald K., Haim A., and Shenker M. 2004. The geochemistry of phosphorus in peat soils of a semiarid altered wetland. Soil Science Society of America Journal, 68: 2078–2085.
20- Maleki S., Khormali F., Kiani F., and Karimi A.R. 2013. Effect of slope position and aspect on some physical and chemical soil characteristics in a loess hillslope of Toshan area, Golestan Province, Iran. Journal of Water and Soil Conservation, 20(3): 93-112. (in Persian with English abstract).
21- Matson P.A., Parton W.J., Power A.G., and Swift M.J. 1997. Agricultural intensification and ecosystem properties. Science, 277:504-509.
22- McDowell RW., and Stewart T.I. 2006. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and 31P NMR. Geoderma, 130:176– 189.
23- McGrath D.A., Smith C.K., Gholz H.L., and Oliveira F.A. 2001. Effects of land-use change on soil nutrient dynamics in Amazônia. Ecosystems, 4: 625–645.
24- Momeni M., Kalbasi M., Jalalian A., and KHademi H. 2009. Effect of land use shifting and overgrazing on loss of selected soil phosphorus forms in two regions of Vanak Watershed. Journal of Water and Soil Science, 12 (46):595-606. (in Persian).
25- Negassa W., and Leinweber P. 2009. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 172: 305–325.
26- Neufeldt H., da Silva J.E., Ayarza M.A., and Zech W. 2000. Land-use effects on phosphorus fractions in Cerrado Oxisols. Biology and Fertility of Soils, 31: 30–37.
27- Olsen S.R. and Sommers L.E. 1982. Phosphorus. p.403-430. In: A. L. Page et al. (eds.), Methods of Soil Analysis. Part 2. 2nd ed. Argon. Mongr. 9. ASA and SSSA, Madison, WI.
28- Ruiz J.M., Delgado A., and Torrent J. 1997. Iron–related phosphorus in over fertilized European soils. Journal of Environmental Quallity, 26: 1548-1554.
29- Sanyal S.K., and de Datta S.K. 1991. Chemistry of phosphorus transformations in soil. Advances in Soil Science, 16:1–120.
30- Schlichting A., Leinweber P., Meissner R., and Altermann M. 2002. Sequentially extracted phosphorus fractions in peat-derived soils. Journal of Plant Nutrition and Soil Science, 165: 290–298.
31- Sharpley A.N., and Smith S.J. 1983. The distribution of phosphorus forms in virgin and cultivated soils and potential erosion losses. Soil Science Society of America Journal, 47:581-586.
32- Sharpley A.N., and Smith S. J.1985. Fractionation of inorganic and organic phosphorus in virgin and cultivated soils. Soil Science Society of America Journal, 49:127-130.
33- Solomon D., and Lehman J. 2000. Loss of phosphorus from soil in semiarid northern Tanzania as a result of cropping: Evidence from Sequential extraction and 31P NMR spectroscopy. European Journal of Soil Science, 51: 699-708.
34- Solomon D., Lehmann J., Mamo T., Fritzsche F., and Zech W. 2002. Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma, 105: 21–48.
35- Sui, Y., Thompson, M. L., and Shang, C. 1999. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Science Society American Journal, 63: 1174-1180.
36- Techienkoua M., and Zech W. 2003. Chemical and spectral characterization of soil phosphorus under three land uses from an Andic Palehumult in West Cameroon. Agriculture, Ecosystems and Environment, 100: 193–200.
37- Tiecher T., Rheinheimer dos Santos D., and Calegari A. 2012. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil & Tillage Research, 124:57–67.
38- Tiessen H., Stewart J.W.B., and Bettany J.R. 1982. Cultivation effects on the amounts and concentration of carbon, nitrogen and phosphorus in grassland soils. Agronomy Journal, 74: 83 l-835.
39- Tiessen H., Stewart J.W.B., and Moir J.O. 1983. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation. Journal of Soil Science, 34: 815–823.
40- Tiessen H., Stewart W.B., and Cole C.V. 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal, 48:853–858.
41- Turrion M.B., Glaser B., Solomon D., Ni A., and Zech W. 2000. Effects of deforestation on phosphorus pools inmountain soils of the allay range Khyrgyzia. Biology and Fertility of Soils, 31: 134–142.
42- Turrion M.B., Lopez O., Lafuente F., Mulas R., Ruiperez C., and Puyo A. 2007. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Science of Total Environment, 378: 195–198.
43- Vaithiyanathan P., and Correll D.L. 1992. The Rhode River watershed: phosphorus distribution and export in forest and agricultural soils. Journal of Environmental Quality, 21: 280–288.
44- Walker T.W., and Syers J.K. 1976. The fate of phosphorus during pedogenesis. Geoderma, 15: 1 –19.
45- Wang G.P., Liu J.Sh., Wang J.D., and Yu J.B. 2006. Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma, 132: 59–74.
46- Wang G.X., Ma H.Y., Qian J., and Chang J. 2004. Impact of land use changes on soil carbon, nitrogen and phosphorus and water pollution in an arid region of northwest China. Soil Use and Management, 20: 32–39.
47- Wang Y.Q., Zhang X.C., and Huang C.Q. 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150: 141–149.
48- Yang W., Cheng H., Hao F., Ouyang W., Liu Sh., and Lin Ch. 2012. The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma, 189&190: 207–214.
49- Zhang T.Q., and Mackenzie A.F. 1997. Changes in soil phosphorus fractions under long term corn monoculture. Soil Science Society of America Journal, 61: 485- 493.
50- Zheng A., Simard R.R., Lafond J., and Parent L.E. 2001. Changes in phosphorus fractions of a Humic Gelysol as influenced by cropping system and nutrient sources. Canadian Journal of Soil Science, 81:175-183.
Send comment about this article