دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

زمان کشت یکی از عواملی است که روی میزان آب مصرفی، عملکرد و بهره­وری مصرف آب گیاهان تأثیرگذار است. مدل­های شبیه­سازی رشد گیاه، ابزار­های مفیدی برای ارزیابی تأثیر تاریخ کشت روی پارامترهای مورد اشاره و تعیین زمان مناسب کشت می­باشند. در این مطالعه به‌منظور تعیین تاریخ مناسب کشت آفتابگردان در استان کرمانشاه از مدل AquaCrop استفاده شد. به‌منظور واسنجی و صحت­سنجی پارامترهای گیاهی مدل AquaCrop آزمایشی مزرعه­ای در قالب طرح بلوک­های کامل تصادفی با هشت تیمار (تیمارهای 60، 80، 100 و 120 درصد نیاز آبی در کل دوره رشد و تیمارهای 20 و 40 درصد کم­آبیاری در دوره رویشی و دوره زایشی) در سه تکرار اجرا گردید. رشد گیاه آفتابگردان با استفاده از مدل واسنجی شده، براساس آمار هواشناسی 30 ساله (2017–1988) برای ایستگاه­های سینوپتیک استان کرمانشاه (کرمانشاه، اسلام‌آباد غرب، سرپل­ذهاب و کنگاور) و برای چند تاریخ کشت مختلف شبیه­سازی گردید. مقادیر عملکرد دانه، تبخیر و تعرق فصلی و بهره­وری مصرف آب بر اساس خروجی­های مدل AquaCrop تعیین گردید. نتایج بیانگر این بود که با توجه به تغییرات پارامترهای هواشناسی در 3۰ سال مورد بررسی، عملکرد پتانسیل دانه در همه ایستگاه­های مورد مطالعه افزایشی بوده است. همچنین نتایج نشان داد تاریخ کشت مناسب که منجر به بالاترین عملکرد دانه و بهره­وری مصرف آب می­شود در مناطق مختلف متفاوت است. مناسب‌ترین تاریخ کشت به‌منظور دستیابی به حداکثر عملکرد دانه در ایستگاه­های سرپل­ذهاب، اسلام‌آباد غرب، کرمانشاه و کنگاور (غرب به شرق استان) به‌ترتیب دهه­های اول فروردین، دوم اردیبهشت، سوم اردیبهشت و اول خرداد تعیین گردید. دهه­های دوم فروردین، اول اردیبهشت، سوم خرداد و دوم خرداد از نظر بهره­وری مصرف آب مناسب­ترین تاریخ کشت برای آفتابگردان به ترتیب در ایستگاه­های سرپل­ذهاب، اسلام‌آباد غرب، کرمانشاه و کنگاور تعیین شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Planting Date on Yield and Water Productivity of Sunflower Using AquaCrop Model

نویسندگان [English]

  • B. Sadeghi 1
  • B. Farhadi Bansouleh 1
  • A. Bafkar 1
  • M. Ghobadi 2

1 Water Engineering Department, Faculty of Agriculture, Razi University, Kermanshah, Iran

2 Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Razi University, Kermanshah, Iran

چکیده [English]

Introduction
The rapid growth of the world's population, followed by an increase in the need for water, has put great pressure on water resources, so it is necessary to plan for the optimal use and increase of efficiency of this vital resource. Sunflower is one of the most important oilseed crops that is mainly cultivated in Kermanshah province. Therefore, determining the appropriate sowing time of this crop for maximum production and water use efficiency is of particular importance. Because field experiments are costly and time-consuming, researchers use crop growth simulation models to determine the optimal planting time for each crop in a specific environment and climate. The use of simulation models minimizes the limitations of field experiments and allows the analysis of plant responses to environmental stresses and management scenarios. The objective of this study was to determine the optimal planting date of the Farrokh sunflower cultivar in four regions of Kermanshah province (Kermanshah, Islam Abad, Sarpol Zahab, and Kangavar) in order to maximize yield and water use efficiency using the AquaCrop model.
Materials and Methods
A field experiment was conducted at the Research Farm of Razi University, Kermanshah, Iran in order to calibrate and validate the crop parameters in the AquaCrop model. The experiment was performed in a randomized complete block design with eight irrigation treatments in three replications. The irrigation treatments were the application of 60, 80, 100, and 120% of irrigation requirement (T1, T2, T3, and T4), 20 and 40% deficit irrigation in vegetative phase (T5 and T6), and 20 and 40% deficit irrigation in reproductive phase (T7 and T8). The crop water requirement was calculated based on the daily weather data collected from an automated meteorological station at the Research Farm using the FAO Penman-Monteith equation. During the growing season, canopy cover, biomass, and soil moisture were measured weekly. The crop parameters were calibrated based on the measured data in treatments T1, T3, T6, and T7 and validated with four treatments T2, T4, T6, and T8. In the calibration and validation stages, the statistical indices including compatibility index (d) and root mean square error (RMSE) were used to evaluate the model outputs. The calibrated model was used to simulate crop growth based on daily weather data for 30 years (1988-2017) in four synoptic stations in Kermanshah province (Kermanshah, Islam Abad, Sarpol Zahab, and Kangavar) and for several different planting dates. The crop water productivity was calculated based on simulated grain yield and seasonal crop evapotranspiration. Finally, the model outputs under different planting dates were analyzed to determine the most appropriate planting time from the perspective of maximum production and maximum water use efficiency.
Results and Discussion
 Statistical indicators show that the model has simulated the parameters of biomass, crop canopy, and soil moisture in the calibration stage with good accuracy. T1 and T6 treatments in biomass simulation, T7, T6, and T3 treatments in crop canopy simulation, and T3 and T7 treatments in soil moisture simulation had the highest accuracy. The accuracy of the model outputs in the validation stage for biomass and canopy cover was as accurate as in the calibration stage, while the accuracy of the simulated soil moisture in the validation stage was not high except in T4 treatment. Based on the model results, grain yield, seasonal evapotranspiration and water productivity were determined. According to the results, it can be said that in the study period (1988 -2017), grain yield has generally increased with a slight slope. The results showed that the planting date, which maximizes grain yield and water productivity, varies in the studied regions.  According to the model results, planting in the second decade of May and the second decade of June will lead to the highest grain yield and water productivity in Kermanshah, respectively. Planting in the third decade of May showed the highest grain yield and crop water productivity in Islam Abad. In Sarpol Zahab, which has the highest temperature among the studied stations, planting in the last decade of March and the first decade of April has the highest grain yield and water productivity, respectively. In Kangavar, which is located in the east of Kermanshah province and has the coldest climate, by cultivating sunflower in the last decade of May and the first decade of June, respectively, the highest grain yield and water productivity can be achieved.
Conclusion
Due to the fact that some crop parameters of crop growth simulation models are variety specific, in this study, the crop parameters of the AquaCrop model for Farrokh sunflower cultivar were calibrated and validated. The accuracy of the calibrated model for estimating biomass and canopy cover was higher than soil moisture. The simulation results showed that the values of the studied parameters (grain yield and seasonal evapotranspiration) have changes according to the planting time in each region. The highest crop yield can be obtained in Sarpol Zahab, Islam Abad, Kermanshah, and Kangavar regions (west to east of the province) by cultivation in the last decade of March, last decade of April, the second decade of May, and last decade of May, respectively. In all study areas except Islamabad, planting date that resulted in maximum water productivity was different from the planting date that had maximum grain yield station and delayed planting had the highest water productivity.

کلیدواژه‌ها [English]

  • AquaCrop
  • Cultivation date
  • Productivity
  • Simulation
  • Sunflower
  1. Abrha B., Delbecque N., Raes D., Tsegay A., Todorovic M., Heng L., and Deckers S. 2012. Sowing strategies for barley (Hordeum vulgare L.) based on modeled yield response to water with AquaCrop. Experimental Agriculture 48(02): 252-271. https://doi.org/10.1017/S0014479711001190.
  2. Ahmadi M., and Farhadi Bansouleh B. 2010. The effect of germination date on barley yield in Mahidasht region of Kermanshah using WOFOST plant growth simulation model. The first international conference on plant, water, soil and air modeling. Kerman, Iran. (In Persian)
  3. Ahmadpour A. 2013. Predicting corn crop yield under different irrigation managements using WOFOST and AquaCrop models in Kermanshah region. Master Thesis in Irrigation and Drainage, Razi University, Kermanshah. (In Persian with English abstract)
  4. Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Rome, FAO, Irrigation and Drainage Paper No.56.
  5. Bange M.P., Hammer G.L., and Rickert K.G. 1997. Environmental control of potential yield of sunflower in the subtropics. Australian Journal of Agriculture Research 48: 231- 240. https://doi.org/10.1071/A96079.
  6. Dera J., Mpofu L.T., and Tavirimirwa B. 2014. Response of pearl millet varieties to different dates of sowing at Makoholi and Kadoma research stations, Zimbabwe. Academia Journal of Agricultural Research 2(4): 110-113. http://dx.doi.org/10.15413/ajar.2014.0116.
  7. Farahani H.J., Gabriella I., and Oweis T.Y. 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal 101 (3): 469–476. https://doi.org/10.2134/agronj2008.0182s.
  8. Khajehpour M.R., and Seyedi F. 2000. Effect of planting date on components and seed and oil yield of sunflower cultivars. Journal of Science and Technology of Agriculture and Natural Resources 4(2): 117-127. (In Persian)
  9. Khaleghi M. 2019. Evaluation of the sunflower yield, water productivity and soil salinity simulation under water and salinity stresses using the AquaCrop model. Journal of Water and Soil Resources Conservation 8(2): 15-37. (In Persian with English abstract)
  10. Khichar M.L., and Niwas R. 2006. Microclimatic profiles under different sowing environments in wheat. Journal of Agro Meteorology 8: 201-209. https://doi.org/10.54386/jam.v8i2.1048.
  11. Mansouri M. 2016. Spatial variation of sunflower yield under deficit irrigation regimes using AquaCrop-GIS model. Master Thesis in Irrigation and Drainage, Razi University, Kermanshah. (In Persian with English abstract)
  12. Mazaherilaqab H., Salavati S., and Mahmoudi R. 2011. Reaction of sunflower yield (Helianthus annuus) of Armavirski cultivar to the date and density of cultivation in dry land conditions of Qorveh, Kurdistan. Crop Production Technology 3(2): 63-74. (In Persian with English abstract)
  13. Mirzaei Z., Berari M., Rezaei zad A., and Mehrabi A.SH. 2012. Effect of planting date on growth indices of new sunflower hybrids (Helianthus annuns) in the cold temperate region of Kermanshah. Journal of Crop Physiology 4(13): 5-20. (In Persian with English abstract)
  14. Mohammadi M., Ghahraman B., Davary K., Ansari H., and Shahidi A. 2015. Validation of AquaCrop model for simulation of winter wheat yield and water use efficiency under simultaneous salinity and water stress. Journal of Water and Soil 29(1): 67-84. (In Persian with English abstract)
  15. Momeni R., Behbahani M.R., Montazer A.A., and Nazarifar M.H. 2008. Application of CropSyst plant growth model to investigate management analyzes of increasing wheat water consumption productivity. second national conference on irrigation and drainage networks management, Shahid Chamran Irrigation and Drainage Network of Ahvaz. (In Persian)
  16. Oiganji E., Igbadun H.E., Mudiare O.J., and Oyebode M.A. 2016. Calibrating and validating AquaCrop model for maize crop in Northern zone of Nigeria. Agriculture Engineering International CIGR Journal 18(3): 1-13.
  17. Raes D., Steduto P., Hsiao T.C., and Fereres E. 2009. AquaCrop-the FAO crop model to simulate yield response to water: reference manual annexes. Agronomy Journal 101(3): 426-437. https://doi.org/10.2134/agronj2008.0139s.
  18. Ramezani M., Babazadeh H., and Sarai Tabrizi M. 2019. Simulating barley yield under different irrigation levels by using AquaCrop model. Irrigation Sciences and Engineering (JISE) 41(4): 161-172. (In Persian with English abstract)
  19. Rao N.K., Gadgil S., Rao S.P., and Savithri K. 2000. Tailoring strategies to rainfall variability-The choice of the sowing window. Current Science 78(10): 1216-1230.
  20. Safari M. 2006. Effects of planting date on seed yield, and yield components of six sunflower cultivars in Kerman. Pajouhesh Va Sazandgi 144: 73-139. (In Persian with English abstract)
  21. Steduto P., Hsiao T.C., Raes D., and Fereres E. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101: 426–437. https://doi.org/10.2134/agronj2008.0139s.
  22. Todorovic M., Albrizio R., Zivotic L., Abi Saab M., Stockle C., and Steduto P. 2009. Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal 101: 509–521. https://doi.org/10.2134/agronj2008.0166s.
  23. Thompson M., Gamage D., Hirotsu N., Martin A., and Seneweera S. 2017. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Frontiers in Physiology 8(578): 1-13. https://doi.org/10.3389/fphys.2017.00578.
CAPTCHA Image