دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه مهندسی آب

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به‌منظور بررسی اثرگذاری پساب شهری بر غلظت عناصر پرمصرف و فلزات سنگینِ خاک و برخی ویژگی‌های ذرت، آزمایشی در قالب طرح کاملاً تصادفی با آرایش فاکتوریل با تیمارهای آزمایشی شامل؛ عامل منبع آب آبیاری (پساب (W1) و آب چاه (W2))، و عامل روش آبیاری (زﻳﺮﺳﻄﺤﻲ (S1) و قطره‌ای نوار تیپ (S2))، در طول فصل رشد 99-1398، در لایسیمتر مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی ساری اجرا شد. بر پایه یافته‌ها، تأثیر نوع منبع آبیاری بر قابلیت هدایت الکتریکی خاک، غلظت عناصر پرمصرف خاک و انباشت فلزات سنگین در خاک تفاوت معنی‌دار داشت (P ≤ 0.01). به‌طوری‌که بیشترین میزان قابلیت هدایت الکتریکی خاک با مقدار 8/1 دسی‌زیمنس بر متر، در شرایط استفاده از پساب مشاهده شد. بالاترین میزان نیتروژن کل، فسفر و پتاسیم به‌ترتیب با مقادیر 086/0، 2/24 و 2/226 میلی‌گرم بر کیلوگرم مربوط به منبع آب پساب بود. نتایج نشان داد که میزان انباشت فلزات سرب (07/0) و کادمیوم (014/0) خاک، در آبیاری با پساب نسبت به منبع آب چاه به ترتیب با 05/0 و 01/0 میلی‌گرم در کیلوگرم، افزایش یافت. همچنین تأثیر روش آبیاری و اثر متقابل منبع و روش آبیاری بر ویژگی‌های شیمیایی، غلظت عناصر پرمصرفِ خاک و انباشت فلزات سنگین در خاک معنی‌دار نبود. نتایج نشان داد که بیشترین عملکرد دانه و بهره‌وری زیست‌توده در آبیاری با منبع پساب به‌ترتیب به میزان 66/918 کیلوگرم در هکتار و 45/1 کیلوگرم در مترمکعب مشاهده شد. بهره‌گیری از آبیاری زیرسطحی افزایش 67 درصدی عملکرد دانه و 28 درصدی بهره‌وری زیست‌توده در مقایسه با روش قطره‌ای نوار تیپ، را در پی داشت. بر پایه یافته‌ها، استفاده از پساب در مقایسه با آب چاه، باعث جذب میزان بیش‌تری از مقادیر سرب و کادمیوم در بخش‌های دانه، برگ و ساقه گیاه ذرت شد در حالیکه غلظت فلزات سنگین زه‌آب حاصل از آبیاری تفاوت معنی‌داری نداشتند. به­طور کلی، استفاده بهینه از پساب برای آبیاری، با بهبود شرایط فیزیکی و شیمیایی خاک، افزایش عملکرد گیاه را به همراه دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Wastewater Effects on Soil Chemical Characteristics, Microelements Concentration, Heavy Metals Accumulation and Mize Yield (Single Cross 704)

نویسندگان [English]

  • F. Alizadehgan 1
  • M.A. Gholami 2
  • S. Shiukhy Soqanloo 3

1 Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Iran

2 Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Iran

3 Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Iran

چکیده [English]

Introduction
Increased agricultural activities, the occurrence of successive droughts, and limited freshwater resources, along with increasing population, have made a priority for the importance of protecting water resources in programs of developed and developing countries. Due to the climatic conditions in Iran, which has a wide range of arid and semi-arid characteristics, facing the challenge of water resources crisis, is inevitable. Therefore, the use of wastewater is very important.
Materials and Methods
This research was conducted in the research farm of Sari University of Agricultural Sciences and Natural Resources (SANRU), which has a silty clay soil texture. The latitude and longitude of the region are 36º 40ʹ N and 53º 04ʹ E, respectively. Its height above sea level is 21 meters. According to Demarten classification, Sari city has a temperate humid climate. The long-term average temperature of Sari is 11.18 °C and the total long-term rainfall is 780 mm. In order to evaluate the wastewater effects on soil chemical characteristics, microelements concentrations, heavy metals accumulation and Maize yield (Single Cross 704), an experiment was carried out as factorial based on a completely randomized design with treatments included; Water source factor (wastewater (A1), well water (A2)), Irrigation (subsurface method (I1) and (drip method (I2)) with three replication in 2018-2019 under lycimetric conditions, at the Sari Agriculture and Natural Resources University (SANRU), Iran.
Results and Discussion
According to this study results, the effect of type of irrigation source on soil electrical conductivity, soil microelements and heavy metals accumulation of the soil was significantly different (P ≤ 0.01). The highest soil electrical conductivity with a value of 1.8 dS.m-1 was observed in the conditions of using treated wastewater. The highest amount of total nitrogen, phosphorus and potassium were related to the source of treated wastewater with values of 0.086, 24.2 and 222.2 mg.kg-1, respectively. The results showed that the accumulation of soil Pb (0.07) and Cd (0.014 mg.kg-1) in irrigation with treated wastewater increased compare to the well water source by 0.05 and 0.010 mg.kg-1, respectively. Also, the effect of irrigation method and the interaction effect of source and method irrigation on soil chemical characteristics, microelements concentration and heavy metals accumulation were not significant. The use of wastewater by increasing soil stability improves soil physical condition, increases soil fertility, increases photosynthetic products, increases the efficiency of plant photosynthetic system and ultimately improves plant growth. The use of subsurface irrigation resulted in a 67% increase in grain yield and 28% increase in biomass productivity compared to the drip method. Adequate nutrients during the reproductive growth stage of the plant play an important role in grain growth. Therefore, it can be said that the nutrients in the wastewater have increased the grain yield compared to using the well water source. Because the wastewater contains nutrients and micronutrients such as; nitrogen, phosphorus, potassium, calcium, zinc and iron were relative to the well water source and increased maize grain yield. The results showed that the use of effluent compared to well water, caused the absorption of more heavy metals lead and cadmium in the grain, leaf and stem of maize. Due to the use of wastewater water source, the amount of Pb uptake among different parts of the maize, with values of 27.2, 22.5 and 20.5 mg / g, respectively, related to the grain, leaf and stem. However, the uptake of Cd in the grains, leaves and stems was 2.32, 1.35 and 2.01 mg / g, respectively. According to the results, the high concentration of heavy metals Pb and Cd due to the use of wastewater in the grain sector directly threatens human health. Also, the concentration of heavy metals Pb and Cd in the leaf and stem parts of corn, by endangering the health of livestock and poultry, indirectly affects human health.
Conclusion
The results showed that irrigation with treated wastewater due to its richness in nutrients and microelements, improves soil fertility and creates favorable conditions by increasing soil organic matter and mineral for plant growth. Also, according to the permissible threshold values of the concentration of heavy metals Pb and Cd in plants, the accumulation of heavy metals Pb and Cd in the grain, stem and leaf of single cross 704 corn, will not be a problem for consumers. Optimal use of wastewater can increase soil fertility and the ability of plants to absorb nutrients from the soil and ultimately increase plant yield.

کلیدواژه‌ها [English]

  • Electrical conductivity
  • Grain yield
  • Heavy metal
  • Subsurface irrigation
  • Wastewater
  1. Abegunrin, T.P., Awe, G.O., Idowu, D.O., & Adejumobi, M.A. (2016). Impact of wastewater irrigation on soil Physico-chemical properties, growth and water use pattern of two indigenous vegetables in southwest Nigeria. Catena 139: 167-178. https://doi.org/10.1016/j.catena.2015.12.014.
  2. Ali Ehyaei, M., & Behbahanizadeh, A. (1999). Description of soil chemical decomposition methods. Soil and Water Research Institute. 893: 128p. (In Persian)
  3. Asgari, K., Najafi, P., & Solymani, A. (2007). Effect of treated wastewater on growth parameters of sunflower in the irrigation treatment condition. Crop Research 33: 82–87. (In Persian)
  4. Assouline, S., & Narkis, K. (2011). Effects of long-term irrigation with treated wastewater on the hydraulic properties of a clayey soil. Water Resources Research 47: 1–12. https://doi.org/10.1029/2011WR010498.
  5. Badiei, A., Karandish, F., & Tabatabai, S. (2016). The effect of irrigation with raw and treated municipal wastewater on wheat yield and microbial properties of soil and plants. Journal of Water and Soil Science 4(2): 215-228. (In Persian)
  6. Baker, A.J., & Brooks, R. (1989). Terrestrial higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 2: 81-126.
  7. Chaney, R.L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. Inorganic Contaminants in the Vadose Zone 140-158. https://doi.org/10.1007/978-3-642-74451-8_10.
  8. Chen, W., Lu, S., Pen, C., Jiao, W., & Wang, M. (2013). Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation. Environmental Pollution 178: 294–299. https://doi.org/10.1016/j.envpol.2013.03.036.
  9. Dal Corso, G., Fasani, E., & Furini, A. (2013). Recent advances in the analysis of metal hyper accumulation and hyper tolerance in plants using proteomics. Frontiers in Plant Science 4: 1-7. https://doi.org/10.3389/fpls.2013.00280.
  10. Dehghani Sanij, H., Khazaei, A., & Zakerei Nia, M. (2014). The role of accurate irrigation in water consumption and water use efficiency. Iranian Journal of Irrigation and Drainage 1: 180-186. (In Persian with English abstract)
  11. Fath Al-Ulumi, S., Asghari, S.h., & Goli Kalanpal, E. (2015). The effect of municipal sewage sludge on the concentration of high consumption elements in soil and plants and some agronomic traits of wheat. Journal of Soil Management and Sustainable Production 2: 49-70. (In Persian with English abstract)
  12. Gatta, G., Libutti. A., Gagliardi, A., Beneduce, L., Brusetti, L., Borruso, L., Disciglio, G., & Tatantino, E. (2015). Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agricultural Water Management 149: 33-43. https://doi.org/10.1016/J.AGWAT.2014.10.016.
  13. Hassanpour Darvishi, H., Manshouri, M., & Aliabadi Farahani, H. (2010). The effect of irrigation by domestic waste water on soil properties. Journal of Soil Sciences and Environmental Management 1: 30-33. https://doi.org/10.5897/JSSEM.9000071.
  14. Hoseinpoor, A., Haghnia, G.H., Alizadeh, A., & Fotovat, A. (2008). Effect of irrigation with raw and treated wastewaters on some chemical characteristic of soil in different depth under continuously and intermittent flood conditions. Iran Journal of Irrigation and Drainage 2: 73–85 .(In Persian with English abstract)
  15. Hu, Y.F., Zhou, G., Na, X.F., Yang, L., Nan, W.B., Liu, X., Zhang, Y.Q., Li, J.L., & Bi, Y.R. (2013). Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Journal of Plant Physiology 170: 965–975. https://doi.org/10.1016/j.jplph.2013.02.008.
  16. Judicial, R. (2016). Evaluation of the effect of irrigation with urban wastewater on the accumulation of some chemical elements in the plant and ecological characteristics of Eucalyptus (Eucalyptus camadulensis). Journal of Plant Ecology 8: 13-29.
  17. Kaboosi, K. (2015). Evaluation of the effect of irrigation with treated wastewater on soil characteristics (Case study: Bandargaz). The 1th national conference on drainage in sustainable agriculture, Iranian Irrigation and Drainage Association, 8 March, Tehran, Iran.
  18. Kaboosi, K. (2017). The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater). Applied Water Science 5: 2385-2396. https://doi.10.1007/s13201-016-0420-5.
  19. Keshavarz, A., Ashrafi, S., Hydari, N., Pouran, M., & Farzaneh, E. (2005). Water allocation and pricing in agriculture of Iran. In Water Conservation, Reuse, and Recycling, Proceedings of an Iranian-American Workshop, National Research Council, The National Academic Press: pp. 153-172.
  20. Khan, S., Cao, Q., Zheng, Y.M., Hung, Y.Z., & Zhu, Y.G. (2008). Health risk of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152(3): 686-692. https://doi.org/10.1016/j.envpol.2007.06.056.
  21. Khawla, K., Besma, K., Enrique, M., & Mohamed, H. (2019). Accumulation of trace elements by corn (Zea mays) under irrigation with treated wastewater using different irrigation methods. Ecotoxicology and Environmental Safety 170: 530-537. https://doi.org/10.1016/J.ECOENV.2018.12.025.
  22. Kouchaki, A., Nasiri Mahallati, M., Khorram Del, S., Anvarkhah, S., Sabet Teymouri, M., & Sanjani, S. (2010). Evaluation of growth indices of hemp (Cannabis sativa) and sesame (Sesamum indicum L.) in intercropping with replacement and additive series. Journal of Agroecology 1: 27-36. (In Persian with English abstract)
  23. Lam, C.W., Tanabe, S., Chan, S.K., Yuen, E.K., Lam, M.H., & Lam, P.K. (2004). Trace element residues in tissues of green turtles (Chelonia mydas) from South China Waters. Marine Pollution Bulletin 48: 174–182. https://doi.org/1016/j.marpolbul.2003.09.003.
  24. Li, X., Kang, Y., Wan, S., Chen, X., & Chu, L. (2015). Reclamation of very heavy coastal saline soil using drip-irrigation with saline water on salt-sensitive plants. Soil and Tillage Research 146: 159-73. https://doi.org/10.1016/j.still.2014.10.005.
  25. Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
  26. Mahfooz, Y., Yasar, A., Guijan, L., Islam, Q.U., Akhtar, A.B., Rasheed, R., Irshad, S., & Naeem, U. (2020). Critical risk analysis of metals toxicity in wastewater irrigated soil and crops: a study of a semi-arid developing region. Scientific Reports 10: 1-10. https://doi.org/10.1038/S41598-020-69815-0.
  27. Mohammad, M.J., & Mazahreh, N. (2003). Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated waste water. Communication in Soil Sciences and Plant Analysis 34(9-10): 1281–1294. https://doi.org/10.1081/CSS-120020444.
  28. Mojiri, A., & Aziz, H.A. (2011). Effects of municipal wastewater on accumulation of heavy metals in soil and wheat (Triticum aestivum) with two irrigation methods. Roman Agriculture Researches 28: 217-222.
  29. Mousavi Nik, M. (2011). Study of the effects of planting density on grain yield and yield components and some morphological traits of grain maize cultivars. Scientific Journal of Crop Ecophysiology (Agricultural Sciences) 17: 89-98. (In Persian with English abstract)
  30. Mousavi, S.R., & Shahsavari, M. (2014). Effects of treated municipal wastewater on growth and yield of maize (Zea mays). Biological Forum 6(2): 228-233. https://doi.org/2166/wst.2012.624.
  31. Nazario, A.A., Zution, I., Agnellos Barbosa, E., Nazario, L., Rodrigues, D., & Matsura, E.E. (2019). Impact of the application of domestic wastewater by subsurface drip irrigation on the soil solution in sugarcane cultivation. Applied and Environmental Soil Science 1: 1-11. https://doi.org/10.1155/2019/8764162.
  32. Oron, G., Campos, C., Gillerman, L., & Salgot, M. (1999). Wastewater treatment, renovation and reuse for agricultural irrigation in small communities. Agricultural Water Management 38: 223-234. https://doi.org/10.1016/S0378-3774(98)00066-3.
  33. Page, M.C., Sparks, D.L., Noll, M.R., & Hendricks, G.J. (1987). Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. Soil Science Society of American Journal 51: 1460-1465. https://doi.org/10.2136/sssaj1987.03615995005100060011x.
  34. Panoras, A., Evgenidis, G., Bladenopoulous, S., Melidis, V., Doitsinis, A., Samaras, I., Zdragkas, A., & Matsi, T.h. (2003). Corn Irrigation with Reclaimed Municipal Wastewater. GlobalNEST International Journal 5(1): 39-45.
  35. Qazavie, R., & Earst, M. (2016). Evaluation of the effect of irrigation with municipal effluent on the accumulation of some chemical elements in the plant and ecological characteristics of the eucalyptus plant (Eucalyptus camadulensis Dehnh). Journal of Plant Ecology 8: 13-29. (In Persian)
  36. Raychaudri, S., Raychaudri, M., Rautaray, S.K., & Kumar, A.( 2014). Impact of urban wastewater on soil and crop. Edition: DWM Bulletin No. 64. Publisher: Directorate of Water Management, Bhubaneswar, Orissa. 32pp.
  37. Rezaei, H., Behran, S.H., & Mosharei, S.H. (1993). Instructions for soil science tests in saline and alkaline soils and their modification. Faculty of Agriculture, Isfahan University of Technology. (In Persian)
  38. Sadeghi, M., Noroozim, M., Kargar, F., & Mehrbakhsh, Z. (2020). Heavy Metal Concentration of Wheat Cultured in Golestan Province, Iran and Its Health Risk Assessment. Journal of Environmental Health and Sustainable Development 5(2): 993-1000. https://doi.org/‎18502/jehsd.v5i2.3386.
  39. Salehi, A., Tabari, M., Mohammadi, J., & Aliarb, A. (2008). Effect of Irrigation with Municipal Effluent on Soil and Growth of Pinus Eldarica Medw. Iranian Journal of Forest and Poplar Research 16: 186–196. (In Persian with English abstract)
  40. Shahid, M., Khalid, S., Abbas, G.h., Shahid, N., Nadeem, M., Sabir, M., Aslam, M., & Dumat, C. (2015). Heavy Metal Stress and Crop Productivity. Crop Production and Global Environmental Issues. Edition: 1, Publisher: Springer, 1-25pp. https://doi: 10.1007/978-3-319-23162-4_1.
  41. Singh, A., & Agrawal, M. (2012). Effects of Waste Water Irrigation on Physical and Biochemical Characteristics of Soil and Metal Partitioning in Beta vulgaris Agriculture Researches 4: 379–391. https://doi.org/10.1007/s40003-012-0044-4.
  42. Singh, P.K., Deshbhratar, P.B., & Ramteke, D.S. (2012). Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agricultural Water Management 103: 100-104. https://doi.org/10.1016/j.agwat.2011.10.022.
  43. Tabtabaei, S.H., Nourmahnad, N., Golestani Kermani, S., Tabtabaei, S.A., Najafi, P., & Heidarpour, M. (2020). Urban wastewater reuse in agriculture for irrigation in arid and semi-arid regions - A review. International. Journal of Recycling Organic Waste in Agriculture 9: 193-220. https://doi.org/10.30486/IJROWA.2020.671672.
  44. Thorburn, P.J., Cook, F.J., & Bristow, K.L. (2002). New water-saving production technologies: advances in trickle irrigation Proceedings. Water for Sustainable Agriculture in Developing Regions–More Crop from Every Scarce Drop 53-62.
  45. Tripathi, K., Rajput, T.B., & Patel, N. (2016). Biometric properties and selected chemical concentration of cauliflower influenced by wastewater applied through surface and subsurface drip irrigation system. Journal of Cleaner Production 139: 396-406. https://doi.org/10.1016/j.jclepro.2016.08.054.
  46. Wang, J.F., Wang, G.X., & Wanyan, H. (2007). Treated wastewater irrigation effect on soil, crop and environment: Wastewater recycling in the loess area of China. Journal of Environmental Science 19: 1093-1099. https://doi.org/10.1016/S1001-0742(07)60178-8.
  47. (1989). Health guidelines for the use of wastewater in agriculture and aquaculture. Technical report series no. 778. World Health Organization, Geneva.
  48. Yasrebi, , Karimian, N.J., Maftoon, M., Abtahi, A., Ronaghi, A., & Asad, M.T. (2002). Distribution of nitrogen forms in cultivated calcareous soils of Fars province and their relationship with soil characteristics. Agricultural Sciences and Techniques and Natural Resources 7(4): 39-51.
  49. Yazdani, A., Saffari, M., & Ranjbar, G.H. (2017). Effect of treatment with treated municipal wastewater on grain yield and accumulation of heavy metals in grain of barley genotypes (Hordeum vulgare). Iranian Journal of Crop Sciences 4: 284-296. (In Persian with English abstract)
  50. Zarei, M., Charm, M., & Moallemei, N. (2014). Effect of treated municipal wastewater sludge on chemical properties and essential nutrients of soil and physiological characteristics of olive seedlings. Agricultural Engineering (Scientific Journal of Agriculture) 2: 1-15. (In Persian)

 

CAPTCHA Image