نوع مقاله : مقالات پژوهشی
نویسندگان
agriculture and natural resources of sari university
چکیده
برای مطالعات کیفی و کمی منابع آب، برآورد بار رسوب معلق رودخانهها بسیار مهم است. بار رسوب معلق بطور معمول با اندازهگیری مستقیم غلظت رسوب معلق یا با بکارگیری منحنی سنجه رسوب انجام میشود. اندازهگیری به روش مستقیم، اگر چه مطمئنترین روش اندازهگیری غلظت رسوبات معلق بوده، با این همه، این روش، اغلب زمان بر و پر هزینه است. همچنین دقت منحنی سنجه رسوب به دلیل برآورد زیاد (در مقادیر کم رسوب رودخانه) یا برآورد کم (در مقادیر زیاد رسوب رودخانه) پائین بوده و لذا از کارائی لازم برخوردار نمیباشد. در این تحقیق، به منظور بررسی امکان تخمین غلظت رسوبات معلق رودخانهای با استفاده از انعکاسات تصاویر ماهوارهای، همبستگی میان بازتاب طیفی باندهای تصاویر سنجنده مودیس (باند قرمز و مادون قرمز) و غلظت رسوبات معلق رودخانه کارون در ایستگاه هیدرومتری ملاثانی در یک دوره زمانی 9 ساله (سال های 1382 تا 1390) مورد بررسی قرار گرفت. در این رابطه از دو مدل آماری (رگرسیون خطی یک متغیره) و شبکه عصبی مصنوعی (پیشخور با الگوریتم آموزش پس انتشار خطا) استفاده شد. ارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی نشان داد که مدل شبکه عصبی مصنوعی با ضریب تعیین (R2) 89/0 و ریشه مربع خطا RMSE)) 122 میلیگرم بر لیتر کارائی بیشتری در مقایسه با مدل رگرسیونی با ضریب تعیین 49/0 و ریشه مربع خطا 204 میلیگرم بر لیتر داشته است. نتایج تحقیق نشان داد که از تصاویر سنجنده مودیس به همراه شبکه عصبی مصنوعی میتوان، در تخمین و پایش غلظت رسوبات معلق روزانه رودخانههای بزرگ استفاده نمود.
کلیدواژهها
عنوان مقاله [English]
An Artificial Neural Network Model for Estimating Fluvial Suspended Sediment Concentration Using MODIS Sensor Images (Case Study: Mollasani Hydrometric Station, Khouzestan Province)
نویسندگان [English]
- M.R. Tabatabaei
- K. Shahedi
- karim solymani
Prof, agriculture and natural resources of sari university
چکیده [English]
The estimation of suspended sediment load is very important for water resources quantity and quality studies. The suspended sediment load is generally calculated by direct measurement of suspended sediment concentration (SSC) of a river or by using sediment rating curve (SRC) method. Direct measurement of the SSC is the most reliable but it is very expensive and time consuming. Also, the efficiency of the SRC method is low because it can substantially underpredict the high and overpredict the low loads. In this research, in order to consider the possibility of estimating the fluvial SSC, using reflectance of satellite images, the correlation between red and infrared bands of MODIS sensor and SSC of Karoun river at Molasani station for a period of 9 years (2003-2011) was considered. In this relation, two models (statistical simple linear regression and feed forward back propagation ANN) were used. The evaluation of models results showed that the efficiency of ANN model with having R2 =0.89 and RMSE=122mg/l was better than the regression relation with R2 =0.49 and RMSE=204mg/l. The research results showed that MODIS sensor images and ANN can be used together to estimate fluvial daily SSC in large rivers.
کلیدواژهها [English]
- ANN
- Karoun river
- MODIS
- Suspended Sediment Concentration
- SSC
ارسال نظر در مورد این مقاله