دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ولی عصر (عج) رفسنجان

چکیده

طبق تحقیقات انجام شده تولید و فعالیت هورمون‌های گیاهی تحت تأثیر عوامل طبیعی و عناصر غذایی مورد نیاز گیاه قرار گرفته و نیتروژن مهم‌ترین تأثیر را بر تولید و انتقال جیبرلیک اسید به اندام‌های هوایی گیاه دارد. به‌منظور بررسی اثر جیبرلیک اسید و نیتروژن بر برخی پارامترهای فیزیولوژی و عناصر غذایی کم‌مصرف پسته (رقم قزوینی) تحت تنش شوری، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار انجام شد. تیمارها شامل سه سطح شوری (صفر، 1000 و 2000 میلی‌گرم کلرید سدیم در کیلوگرم خاک)، سه سطح نیتروژن (صفر، 75 و 150 میلی‌گرم در کیلوگرم خاک از منبع نیترات آمونیوم) و سه سطح جیبرلیک اسید (صفر، 250 و 500 میلی‌گرم در لیتر) بودند. نتایج این آزمایش نشان داد که شوری کلرید سدیم محتوای کاروتنوئید و شاخص کلروفیل فلورسانس را نسبت به شاهد کاهش داد، ولی با اعمال تیمارهای جیبرلیک اسید و نیتروژن پارامترهای ذکر شده با افزایش چشمگیری نسبت به شاهد روبرو شد. با توجه به این‌که شوری کلرید سدیم سبب افزایش میزان پرولین برگ گردید، کاربرد 150 میلی‌گرم نیتروژن و محلول‌پاشی 500 میلی‌گرم در لیتر جیبرلیک اسید این پارامتر را به ترتیب 55 و 26 درصد افزایش داد، اما کاربرد توأمان این دو تیمار در بالاترین سطوح خود باعث افزایش 79 درصدی پرولین نسبت به شاهد شد. نتایج این آزمایش هم‌چنین نشان داد، با افزایش شوری کلرید سدیم غلظت عناصر آهن، منگنز و روی افزایش ولی غلظت مس اندام هوایی و ریشه کاهش یافت، لیکن با کاربرد 150 میلی‌گرم نیتروژن و با مصرف 500 میلی‌گرم در لیتر جیبرلیک اسید غلظت مس نیز افزایش یافت. به‌طور کلی نتایج این آزمایش نشان داد در شرایط شوری کلرید سدیم، کاربرد جیبرلیک اسید و نیتروژن به تنهایی و یا توأمان از طریق بهبود پارامترهای فیزیولوژی و هم‌چنین افزایش غلظت عناصر غذایی کم مصرف عملکرد گیاه پسته در شرایط تنش شوری کلرید سدیم را بهبود بخشید.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

نویسندگان [English]

  • vahid mozafari
  • fariba khaleghi

Vali-e-Asr University of Rafsanjan

چکیده [English]

Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water and with low quality (28). On the other hand, nitrogen is a dynamic element which is a constituent of amino acids, proteins, nucleic acids and Enzymes and it has a vital role in plant physiology, growth, chlorophyll formation and production of fruit and seeds (34). Gibberellic acid is known as phytohormon which varied physiological responses in plants under stress. acid gibberellic increases the photosynthesis and growth under stress and impact on the physiology and metabolism of plant (29). Based on previous studies, production and activity of plant hormones are affected by natural factors and plant nutrient requirements and the nitrogen has an important influence on production and transmission of acid gibberellic plant shoot. Therefore, in this study the effect of acid gibberellic and nitrogen on some characteristics of physiology parameters and micronutrient pistachio seedlings (Cv. Qazvini) under saline conditions was studied.
Materials and methods: Experiment under greenhouse condition and factorial in a completely randomized design with three replications was conducted in greenhouse agriculture college, Vali-E-Asr University of Rafsanjan. Treatments consisted of three levels of salinity (0, 1000 and 2000 mg of sodium chloride per kg of soil), three levels of nitrogen (0, 75 and 150 mg per kg of ammonium nitrate source) and three acid gibberellic levels (0, 250 and 500 mg per liter). Adequate soil with little available salinity conditions was collected from the top 30-cm layer of a pistachio-culture region of Kerman province. After air drying and ground through passing a 2 mm sieve, some of the physical-chemical properties of this soil include pH (7/63), Tissue (Sandy loam), electrical conductivity (ECe) (1 dS m-1), Silt (23.1%), Clay (5.5%), Organic matter (0.5%), Olsen phosphorus (P) (5.35 mg kg-1), Ammonium acetate-extractable K (100 mg kg-1) were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting), divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week.
Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations of copper element increased. Hojjat nooghi and Mozafari (28) reported, the used salinity of 60 mM NaCl increased shoot Fe concentration, but by applying the same amount of salinity in the root iron concentration decreased compared with the control. Research has shown that the copper concentration in the leaves and shoot of corn planted in soil decreased with increasing salinity. Micronutrient absorption reduction such as copper in salt condition can result in greater absorption of nutrients such as sodium, magnesium and calcium. The researchers in the study reported that with increasing nitrogen in the form of nitrate and ammonium, zinc concentration in plant tissues increased along with increasing salinity and lower shoot dry weight, zinc concentration was increased in two wheat cultivars too.
Conclusion: The results of this experiment showed that under saline conditions, acid gibberellic and nitrogen applied alone or in combination improved physiology parameters and increased nutrient concentration of pistachio seedling.

کلیدواژه‌ها [English]

  • Carotenoid
  • copper
  • Iron
  • Proline
  • salinity
1- Abbaspour H. 2012. Effect of salt stress on lipid peroxidation, antioxidative enzymes and proline accumulation in pistachio plants. Journal of Medicinal Plants Research, 6: 526-529.
2- Abdollahi F., Jafari L., and Gordi takhti S.h. 2013. The effect of Gibberellin on growth and chemical composition of the leaves (Ziziphus spina-christi) under salt stress. Department of Horticulture, College of Agriculture and Natural Resources, University of Hormozgan. 67-53.
3- Abdul Jaleel C., Manivannan P., Wahid A., Farooq M., Jasim Al-juburi H., Somasundaram R., and Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigment composition. Agriculture and Biology, 11: 100-105.
4- Akhkha A.‚ Boutra T., and Alhejely A. 2011. The rates of photosynthesis chlorophyll content, dark respiration, proline and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of Agricultural and Biological Engineering, 13: 215-221.
5- Alipour H., and Hosseini fard S.J. 2005. Diagnose and fix the lack of nutrients in Pistachio. Ministry of Agriculture, Agricultural Research Service.
6- Arnon D .I. 1949. copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. plant physiology, 24: 1-15.
7- Artca R.N. 2002. Principles and application of plant growth regulators (translation Fattahi Gh. And Ismailpour B.). Publications University of Mashhad.
8- Assadollahi Z., and Mozafari V. 2012. The effect of salinity and manganese on the growth and chemical composition of salt and Pistachio seedlings (Pistacia vera L.) in perlite medium. Journal of Science and Technology of greenhouse cultures. 12: 13-27. (in Persian with English abstract)
9- Bureau of Agricultural Statistics and Information Technology. 2011. Department of Planning and Economy Ministry of Agriculture. Tehran, Iran.
10- Bybordi A., Tabatabaei S.J., and Ahmadev A. 2010. E ffects of salinity on fatty acid composition of canola (Brassica napus L.). Journal of Food Agriculture and Environment, 8: 113-115.
11- Daneshmand A., Shirani rad A.H., Noormohammadi Gh., Zareie Gh., and Daneshian J. 2008. The effect of water stress and different amounts of nitrogen on yield, yield components and physiological characteristics of colza two varieties. Journal of Agricultural Sciences and natural Resources. 15: 99-112. (in Persian with English abstract)
12- Drihem K., and Pillbeam D.J. 2002. Effect of salinity on accumulation of mineral nutrient wheat grown with nitrate-nitrogen or mixed ammonium: nitrate-nitrogen. Journal of Plant Nutrition, 25: 2091-2113.
13- Emami A. 1996. Decomposition of plant (1). Technical Bulletin No. 928. Soil and Water Research Institute. Tehran, Iran.
14- Eskandari S., and Mozafari V. 2012. Effect of salinity and copper on growth characteristics and chemical composition of two varieties of Pistachio. Journal of Science and Technology of Agriculture and Natural Resources, Water and soil sciences. 60: 199-213.
15- Fattahi M. 2013. Effect of arbuscular mycoriza (Glomus mosseae) on salinity tolerance of three rootstocks sarakhs, abareghi and beneh baghi (P. eurycarpa × P. mutica). Factualy of Agriculture, University of rafsanjan valie asr.
16- Fritchi F.B., and Ray J.D. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 45: 92 -98.
17- Ghorbani Javid M., Sorooshzadeh A., Moradi F., Modarres Sanavy S.A.M., and Allahdadi I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Austrialian Journal of Crop Science, 5: 726-734.
18- Gijon M.C., Guerrero J., Couceiro J.F., and Moriana A. 2009. Deficit irrigation without reducing yield or nut splitting in pistachio (Pistacia vera cv Kerman on Pistacia terebinthus L.). Agricultural Water Management, 96: 12 –22.
19- Goldberg S.P., Smith K.A., and Holmes J.C. 1983. The effects of soil compaction, forms of nitrogen fertilizer, and fertilizer placement on the availability of manganese to barley. Journal of the Science of Food and Agriculture, 34: 657-670.
20- Haleem A., and Mohammed M. 2007. Physiological aspects of Mungbean plant (Vigna radiate L. wilczek) in response to salt stress and gibberellic acid treatment. journal of agriculture and biological sciences 3: 200-213.
21- Hassan pour Z. 2011. Response of two varieties pomegranate. Master thesis, Department of Horticulture, College of Agriculture, University of valie-asr. to drought and salinity
22- Hojjat Nooghi F., and Mozafari V. 2012. Effects of calcium on eliminating the negative effects of salinity in pistachio (Pistacia vera L.) seedlings. Australian Journal of Crop Science, 6: 711-716.
23- Hokmabadi H., Arzani K., Dehghani shurki Y., and Panahi B. 2003. Response of Call basis Pistachio Badamie Zarand, Sarakhs and Qazvini to high of boron and sodium chloride in water. Science and Technology of Agriculture and Natural Resources. 4: 36-42.
24- Hosseini fard J., Heydari nejad A., Ershadi M.A., and Salehi F. 2004. Identify the need for diet Pistachio Doris method. Pistachio Research Institute.
25- Iqbal N., Nazar R., Iqbal M., Khan R., Masood A., and Khan N.A., 2011. Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions CURRENT SCIENCE, 100: 7-10.
26- Jahani M. 2008. Vermi compostes provide a variety of different organic wastes and examining their effects on plant growth. Master thesis. Zanjan University.
27- Khosh goftar manesh A.H., and Siadat H. 2002. Mineral nitrition of vegetables and horticultural crops in saline conditions. Ministry of Agriculture. Department of Horticulture. Page 65.
28- Marschner H. 1995. Functions of mineral nutrients: Micronutrients. In: Mineral nutrition of higher plants (2nd ed.), Academic Press Limited. San Diego. CA.
29- Maxwell K., and Jounson G.N. 2000. Chlorophyll fluorescence: Apractical guide. Journal of Experimental Botany, 51: 659-668.
30- Mozafari V. 2005. The role of potassium, calcium and zinc pistachio control dieback disease. Ph. D. Thesis. Soil Section. Department of Agriculture. Tarbiat Modarres University. Tehran.
31- Mozafari V., Assadollahi Z., Tajabadi pour A., and Akhgar A. 2013. The effect of salinity and manganese on some physiological characteristics and eco physiological of pistachio (Pistacia vera L.). Journal of Soil and Water Research, 81: 44-94. (in Persian)
32- Najafi F., and Taghi zadeh Z. 2013. The effects of interaction of gibberellic acid and chlorine and cadmium on photosynthetic pigments of alfalfa (Medicago Sativa L.). National conference of environmental research. Hamedan.
33- Neocleous D., and Vasilakakis M. 2007. Effect of NaCl stress on red raspberry (Rubus idoeus L. Autumn Bliss). Journal of Horticultural Science, 112: 282- 289.
34- Olsen S., Champion D.F., and Pearson C. 1997. Nitrification inhibitor boots corn yields.
35- Orhue F.R., and Nwaoguala C.N.C. 2010. The effect of manganese on early growth of fluted pumpkin (Telfairia occidentalis Hook F) in an Ultisol. Journal of Tropical Agriculutre Food and Environmental Extension, 9: 154-160.
36- Panahi B., Ismail pour A., Farbod F., Moazen pour M., and Farivar mihan H. 2001. Pistacio guide (planting and harvesting). Press release agricultural education.
37- Paquin R., and Lechasseur P. 1979. Observations sur une method dosage de la prolin libre dans les extraits de plantes. Canadian Journal of Botany, 57: 1851-1854.
38- Roy S.K., Rahaman S.M.L., and Salahudding A.B.M. 1995. Effect of nitrogen and potassium on growth and seed yield of sesame (Sesamum Indicum L.). The Indian Journal of Agricultural Sciences, 65: 509-511.
39- Ruiz D., Martinez V., and Cerda A. 1997. Citrus response to salinity: Growth and nutrient uptake. Tree Physiology, 17: 141-150.
40- SafariR., Maghsoudi mood A.A., and Safari V.R. 2013. The effects of salinity on Chlorophyll fluorescence and grain yield of sun flower varieties. Seed and Plant Journal. 2-29: 109-130.
41. Serna M.D., Borras R., Legaz F., and Primo-millo E. 1992. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant and Soil, 147: 13-23
42- Tavallali V., and Rahemi M. 2009. Effects of rootstocks on nutrient acquisition by leaf, kernel and quality of pisrachio (Pistacia vera L.). American-Eurasian Journal of Agricultural and Environmental Science, 2: 240-246.
43- Tuna A.L., Kaya C., Dikilitas M., and Higgs D. 2008. The combined effects of gibberellic acid and salinity on som antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62: 1-9.
44- Zou C., Shen J., Zhang F., Guo S., Rengel Z., and Tang C. 2001. Impact of nitrogen form on iron uptake and distribution in maize seedlings in solution culture. Plant and Soil, 235: 143-149.
CAPTCHA Image