دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زابل

2 دانشگاه فردوسی مشهد

چکیده

با توجه به اقلیم خشک و پراکنش نامناسب بارش در ایران، تولید مواد غذایی کافی و کشاورزی پایدار، منوط به استفاده صحیح و علمی از منابع آب است. هم اکنون بیش از 60 درصد منابع آب به دلیل عدم استفاده از تکنولوژی‌های پیشرفته در مزارع ایران به هدر می‌رود و موجب کاهش سطح زیرکشت در برخی مناطق می‌شود. اهداف اصلی مطالعه حاضر، تعیین الگوی کشت، تعیین مقدار آب تخصیصی به هر بخش (کشاورزی، آبزی پروری و محیط زیست)، تعیین میزان کمبود آب هر بخش و تعیین مقدار سود خالص سیستم در سال 1393 تحت سناریوهای خشکسالی، نرمال‌سالی و ترسالی با استفاده از روش برنامه‌ریزی تصادفی دومرحله‌ای می‌باشد. داده‌های مورد نیاز از شرکت آب منطقه‌ای گلستان و برای سال‌های 80 تا 92 جمع‌آوری شد. نتایج نشان داد که در اثر تخصیص آب با استفاده از مدل برنامه‌ریزی تصادفی دومرحله‌ای میزان تقاضای آب هدف بخش‌های آبزی‌پروری و زیست‌محیطی تأمین می‌شود و کمبود آبی برای این بخش‌ها تحت سناریوهای مورد مطالعه و راندمان‌های 37 درصد، 45درصد و 51 درصد وجود ندارد. اما برای بخش کشاورزی در سناریوی خشک‌سالی تقاضای آب هدف تأمین نمی‌گردد و کمبود آب تحت راندمان‌های متفاوت به ترتیب به میزان 98/40، 67/23 و 7/ 14 میلیون ‌متر مکعب وجود دارد. سود سیستم هم با افزایش راندمان آبیاری افزایش یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

Strategies of Voshmgir Dam Water Allocation Using Two-Stage Stochastic Programming

نویسندگان [English]

  • elham kalbali 1
  • Mahmood Sabouhi 2
  • mahmoud ahmadpour 1

1 University of Zabol

2

چکیده [English]

Introduction: In the present study, dealing with water deficit challenges for Gorgan River Basin has been considered. Golestan province's economy is dependent on agriculture but the occurrence of drought periods reduced the agricultural production and consequently the region's economy is in crisis. Therefore, performing studies for programming and management of the water resources of the province and the water allocation in the margin of Voshmgir dam in Gorganrood basin has a great deal of importance. The issue of the allocation of water resources is proposed in order to maximize the expected profit of the water system. According to the regional water organization policy, one of the main goals of Voshmgir dam water management is the allocation of water between the competing consumers. If the amount of promised water is released in the future, the expected net profit of the system will be realized and if it is not released, the system will experience losses.
Materials and Methods: In this studyWater supply is considered stochasticand objective function of the model is to maximize the system (Agriculture, Aquaculture and Environment) profit and optimal allocation of water during the programming period using a two-stage stochastic model as follows:



Constraint of the available land:

Constraint of the available water in each of the main canals:

Constraint of the available water:

Constraint of the amount of inflow water

Reservoir capacity constraint

Constraint on the maximum and minimum water demand for environmental sector

Constraint on the maximum and minimum water demand for crops

Constraint on the maximum and minimum water demand for warm-water fish

Constraint on non-negativity of the decision variables in the model

Results and Discussion: The length of the right main canal of this network is about 17.76 km and the length of the left main canal is about 21.338 km. In this study, is considered for the right main canal and is considered for left main canal. Lands under irrigation network are considered in three regions. Right bank regions and sample farm are covered by the network in the right part of the network and the left bank regions are covered by the network on the left. Thus, there is one region in the left side of the network and there are two regions on the right. The major crops cultivated in the agricultural lands of the network include wheat, barley, canola, cotton, alfalfa, sunflower, rice, cotton-melon, and maize. Due to the random nature of the river flow to the dam, fixed and determined data cannot be used to calculate the volume of water entering the irrigation system, for this reason, using simulation techniques, we can predict the future behavior of the system for each reservoir. The results of the study showed that only agriculturalsector suffers from water deficit and target water demand of the other sectors is supplied and there is no deficit of water for these sectors and target water demand, lack of water and the final allocation of water in the agricultural sector are declined under different efficiencies of irrigation. If other sectors are remained unchanged and irrigation efficiency did not affect them, it is because irrigation efficiency has a direct impact on the water use in agriculture and decreases by increasing the efficiency of the allocated water to this sector and the amount of water stored in the reservoir for the coming year is added. By increasing the efficiency of irrigation which has a direct impact on water use in agriculture sector, the amount of water deficit reduced as a result of the increased system profit.
Conclusion: The results showed that there is no water deficit for aquaculture and environmental sectors in the scenarios of dry, wet and normal years and the target water demand of these sectors is supplied. However, the amount of water deficit in agricultural sector in dry year with the probability of 18% and under the efficiencies of 37, 45 and 51 percent would be 40.98, 23.67 and 14.07, respectively. With the increase in efficiency, water demand in agriculture, water deficit and ultimate allocation of water to this sector are decreased and system profit under different efficiencies is increased. Based on the obtained results, highlighting the irrigation efficiency and allocating the minimum water demand of the sectors is recommended.

کلیدواژه‌ها [English]

  • Golestan province
  • Monte Carlo Simulation
  • Uncertainty
  • water resources management
1- Borhani Darian A., and Mohammad Moradi A.M. 2010.Application of Ant-Colony-Based Algorithms to Multi-Reservoir Water Resources Problems.Journal of Water and Wastewater,4:81-91.(in persion With English abstract)
2- Etkin D., Kirshen P., Watkins D., Roncoli C., Sanon M., Some L., and Dembele Y. 2015. Stochastic programming for improved multi-use reservoir operation In Barkina Faso, West Africa.Journal of WaterRresourcesPlanning and Management, 141:1-9.
3- Fall Suleiman M., and Chakoshi B. 2011. The role of optimal management of agriculture water use to increase the productivity and sustainability of waterresources in arid plains of iran case study west plains Birjand, Journal of Geography and Regional Development., 16: 199-218.(in persion).
4- Ghadami S.M., Ghahraman B., Sharifi M.B., and Rajabi Mashhadi H. 2009.Optimization of Multireservoir Water Resources Systems Operation Using Genatic Algorithm, Iran-Water Resources Research, 2: 1-15. (in persion With English abstract)
5- Homayounfar M., and Rastegari Pour F. 2010. Allocation of water Dam Latiyan between agricultural products The uncertainty, Journal of Agricultural Economics and Development, 2: 259-267. (in persion)
6- Huang G.H., and Loucks D.P. 2000. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineer Environmental Systems, 17: 95-118.
7- Huanga Y., LiY P., Chenc X., and Ma Y.G. 2012. Optimization of the irrigation water resources for agricultural sustainability in Tarim river basin, China.Agricultural Water Management, 107: 74– 85.
8- Li M., and Guo P. 2014. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties.Applied Mathematical Modeling, 19: 4897- 4911.
9- Li Y.P., Huang G.H., Ynng Z.F., and Nie S.L. 2008. IFMP: Interval-fuzzy multistage programming for water resources management under uncertainty. Journal of Resources Conservation and Recycling, 52: 800-812.
10- Lu H.W., Huang G.H., Lin Y.P., and He L. 2009. A two-step infinite α-cuts fuzzy linear programming method in agricultural irrigation systems. Journal of Water Resources Management, 23: 2249-2269.
11- Momeni M., and Rezai N. 2009. Operation Model of the Aras Dam Reservoir Using Dynamic programming, Journal of Industrial Management, 1:139-152. (in persion)
12- Mosanan Mozaffari M., Sabouhi M., and Keykha A.A. 2009. Decision support model to Amirkabir dam water allocation For different use, Journal of Agricultural Economics, 4: 157-176. (in persion)
13- Najafi M.R., Hashempour J., and Khaiat-Kholghi M. 2005. Optimization of Reservoir Operation using linear programming and its application in Voshmgir reservoir. Journal of Agricultural and Natural Resource Sciences., 12: 27-35. (in persion With English abstract)
14- Nourani V., Abolvaset N., and Salehi K. 2012. A hybrid Goal Programming method and Adaptive Neural-Fuzzy Inference System for Optimal Operation of a Multi-Objective TwoReservoir System, Iran-Water Resources Research, 2: 1-11. (in persion With English abstract)
15- Regional Water Organization Golestan Province. 2014. Data and information dams.(in persion)
16- Revelle C., Joeres E., and Kirby W. 1969. The linear decision rule in reservoir management and design: 1, Development of the stochastic model.Water Resources Research., 5(4): 767-777.
17- Sabouhi M., and Mojarad A. 2010. Application of Game Theory In the management of groundwater resources the upper watershed, Journal of Agricultural Economics and Development, 1: 1-12. (in persion)
18- Seckler D., Amarasinghe U., Molden D., Silva R., and Baker R. 1998. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues. International Water Management Institute.
19- Sethi L.N., Panda S.N., and Nayak M.K. 2006. Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India. Journal of Agricultural Water Management, 83:209-220.
20- Website Governorate of Golestan. 2013. Gonbad.golestanp.ir.(in persion)
CAPTCHA Image