دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه لرستان

چکیده

تحرک کادمیم در خاک تحت تاثیر عوامل مختلفی است و جذب آن توسط توتون بیشتر از سایر گیاهان زراعی است. این آزمایش با هدف بررسی برهمکنش سه عامل شوری آب آبیاری (صفر، 20 و 40 میلی‌مولار NaCl)، کود سوپر فسفات تریپل (صفر و 5/1 گرم بر کیلوگرم خاک) و آلودگی کادمیم خاک ( صفر و 12 میلی‌گرم بر کیلوگرم خاک) به صورت فاکتوریل در قالب طرح کاملا تصادفی با چهار تکرار بر غلظت کادمیم بخش هوایی، غلظت کادمیم دود توتون، درصد استخراج DTPA، غلظت کادمیم خاکستر توتون، فاکتور تحرک کادمیم و درصد توزیع شکل‌های شیمیایی کادمیم خاک، انجام شد. نتایج نشان داد که فاکتور تحرک کادمیم در خاک آلوده شده به کادمیم نسبت به خاک غیر آلوده در شوری صفر، 20 و 40 میلی‌مولار به طور میانگین و به‌ترتیب 6/25، 4/32 و 2/36 درصد افزایش نشان داد. کاربرد کود فسفاته، سبب کاهش معنی‌دار فاکتور تحرک کادمیم در خاک­های غیر آلوده به کادمیم شد. در خاک‌های آلوده به کادمیم، درصد استخراج DTPA با افزایش سطوح شوری آب آبیاری از صفر به 20 و 40 میلی‌مولار به‌ترتیب به مقدار 5/26 و 4/56 درصد افزایش نشان داد. در خاک‌های غیر آلوده به کادمیم، کاربرد کود سوپر فسفات تریپل در شوری‌های صفر، 20 و 40 میلی‌مولار آب آبیاری به‌ترتیب سبب کاهش درصد استخراج DTPA به میزان 2/20، 4/28 و 6/24 درصد نسبت به عدم کاربرد کود شد. با افزایش سطوح آلودگی کادمیم خاک، درصد غلظت کادمیم بخش‌های اکسیدی خاک کاهش و درصد غلظت کادمیم بخش کربناتی، آلی و باقی‌مانده افزایش نشان داد. کاربرد کود فسفاته سبب افزایش غلظت کادمیم باقی مانده خاک شد. با افزایش سطوح آلودگی کادمیم خاک، درصد کادمیم بخش کربناتی و ماده آلی خاک نسبت به خاک غیر آلوده به کادمیم افزایش معنی‌داری نشان داد. نتایج هم چنین نشان داد که کاربرد کود سوپرفسفات تریپل در خاک آلوده به کادمیم و در شوری صفر، 20 و 40 میلی‌مولار به‌ترتیب سبب افزایش غلظت کادمیم خاکستر توتون به مقدار 47/1، 89/15 و 80/29 درصد و غلظت کادمیم دود توتون به میزان 2/23، 3/23 و 18 درصد گردید. عامل شوری و کود فسفاته روند معکوسی بر کادمیم بخش محلول+تبادلی و کادمیم فراهم با DTPA خاک داشتند به طوری‌که با افزایش شوری، این غلظت‌ها افزایش و با افزایش کود سوپر فسفات تریپل، کاهش نشان داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Triple Super Phosphate Fertilizer and Irrigation Salinity Effects on Soil Cadmium Mobility and Absorption

نویسندگان [English]

  • A. Moslehi
  • M. Feizian

Department of Soil Science, Faculty of Agriculture, Lorestan University

چکیده [English]

Introduction
Cadmium (Cd) mobility in soil is affected by various factors and its absorption from soil by tobacco is higher than other crops. Application of phosphate fertilizers in agricultural lands is an essential step to increase the yield of tobacco plants. Since most phosphate fertilizers contain small amounts of Cd, the uptake of Cd by tobacco plant in its cultivated areas due to the application of triple superphosphate fertilizer (TSP) is not unexpected. In many tobacco growing areas, the water or soil used is between low and medium salinity in terms of salinity, which can also influence the solubility of cadmium and, consequently, its uptake by tobacco plant. Cadmium can be absorbed through food, drink and respiration. This metal not only is absorbed by the digestive organs, but also is absorbed by the respiratory organs through airborne particles and cigarette smoke. Tobacco is resistant to high concentrations of Cd in soil and can absorb it from Cd-contaminated soil. The aim of this study is to investigate the effect of P fertilizer and salinity on Cd mobility in soil and tobacco plant.
Materials and Methods
This experiment was conducted with the aim of investigating the interaction of three factors of irrigation salinity (0, 20 and 40 mM NaCl), triple tuper phosphate fertilizer (TSP) (0 and 1.5 g kg-1 soil) and soil Cd contamination level (0 and 12 mg kg-1 soil) in a completely randomized design with four replications on shoot Cd concentration, smoke Cd concentration, extraction percentage of DTPA, tobacco ash Cd concentration, Cd mobility factor and Cd fractions in soil. To homogenize the samples, they were thoroughly mixed together and the resulting composite samples were passed through a 2 mm sieve to incubate the samples and then implant. Cadmium contamination levels (0 and 12 mg kg-1) were prepared from Cd(NO3)2.4H2O source. Prior to planting, the relevant levels of contamination were added by spraying on the entire soil surface and mixed thoroughly. Soil samples were transferred to plastic storage containers and incubated for four months in a controlled greenhouse within a temperature range of 25-30 °C and 70% water holding capacity of the soil measured by the weighing method. Cultivation was carried out under controlled conditions in a greenhouse environment located in Bardaskan city. Two 60-day-old tobacco seedlings (Nicotiana tabacum L.) of Cocker 347 cultivar, which were previously seeded in non-contaminated cadmium soil and grown with non-saline water, were transferred to each pot and planted. The cultivar used in this experiment was a greenhouse tobacco cultivar used in the cigarette industry. Immediately after transferring the seedlings to pots, irrigation was performed with saline-free water (distilled water), salinity of 20 or 40 mM NaCl salt for 75 days according to the required treatment. Up to the fourth week, the amount of 400 ml per pot in each irrigation cycle, and after that until the end of the experiment, the amount of 800 ml per pot in each irrigation cycle was applied.
 
 
Results and Discussion
The results showed that Cd mobility factor in Cd-contaminated soil increased on average by 25.6%, 32.4% and 36.2% compared to non-contaminated soil at 0, 20 and 40 mM salinity, respectively. Application of phosphate fertilizer significantly reduced the mobility factor of cadmium in non-cadmium-contaminated soils. In Cd-contaminated soil, the extraction percentage of DTPA increased 26.5% and 56.4% with increasing irrigation salinity levels from 0-20 and 0-40, respectively. In non-Cd contaminated soil, TSP application reduced extraction percentage of DTPA 20.2%, 28.4% and 24.6% in 0, 20 and 40 irrigation salinity levels, respectively in compared to non-TSP application. With increasing the levels of soil Cd contamination, the percentage Cd concentration in oxide fraction of soil decreased and the percentage of Cd concentration in carbonate, organic and residual fractions increased. Application of TSP increased the concentration of residual Cd fraction in the soil.
Conclusion
With increasing the level of Cd contamination in soil, the percentage of Cd in carbonate and organic fractions increased compared to non-Cd contaminated soil. The results showed that TSP application in Cd contaminated soil in salinitylevels of 0, 20, and 40 mM increased Cd concentration of tobacco ash by 1.47%, 15.89% and 29.80% and increased Cd concentration of tobacco smoke by 23.20%, 23.30% and 18%, respectively. Salinity factor and phosphate fertilizer showed the reverse effect on soluble + exchangeable cadmium and DTPA available Cd in soil, so with increasing salinity, these concentrations increased and with increasing triple superphosphate fertilizer decreased.

کلیدواژه‌ها [English]

  • Cadmium mobility index
  • Cd concentration of tobacco smoke
  • different cadmium fractions in soil
  • extraction percentage of DTPA
  1. Acosta J.A., Jansen B., Kalbitz K., Faz A., and Martínez-Martínez S. 2011. Salinity increases mobility of heavy metals in soils. Chemosphere 85: 1318–1324. http://doi.org/10.1016/j.chemosphere.2011.07.046.
  2. Application Bulletin 314 e. Determination of total phosphate in phosphoric acid and phosphate fertilizers with 859 Titrotherm. Page1-4. Metrohem.
  3. Bingham F.T., Sposito G., and Strong J.E. 1984. The effect of chloride on the availability of cadmium. Journal Environment Qual. 13: 71-74. https://doi.org/10.2134/jeq1984.00472425001300010013x.
  4. Christensen T.H., and Haung P.M. 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. In “Cadmium in Soils and Plants” (M. J. McLaughlin and B. R. Singh, Eds.), pp. 65–96. Kluwer Academic Publishers, Dordrecht.
  5. Gee G. W., and Bauder J. W. 1986. Particle size analysis, hydrometer method. P.404-408. In A. Klute et al.(eds) Methods of soil analysis, part1. 3rd Am. Soc. Agron. Madison. WI.
  6. Guo J., Leia M., Yanga J., Yanga J., Wana X., Chena T., Zhoua X., Gua S., and Guo G. 2017. Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon) as potential Cd accumulators. Ecological Engineering 106: 409–414. Analytica Chimica Acta https://doi.org/10.1016/j.ecoleng.2017.04.069.
  7. Hu Y., Vanhaecke F., Moens L., Dams R., del Castilho P., and Japenga J. 1998. Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry. Analytica Chimica Acta 373: 95-105. https://doi.org/10.1016/S0003-2670(98)00399-7.
  8. Janouskova M., Vosatka M., Rossi L., and Lugon-Moulin N. 2007. Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum) types. Applied Soil Ecology 35: 502–510. https://doi.org/10.1016/j.apsoil.2006.10.002.
  9. Lei M., Liao B., Zeng Q., Qin P., and Khan S. 2008. Fraction distributions of lead, cadmium, copper and zinc in metal contaminated soil before and after extraction with disodium ethylenediaminetetraacetic acid. Commun. Soil Science Plant Analytica 39: 1963-1978. https://doi.org/10.1080/00103620802134776.
  10. Lindsay W.L., and Norvell W.A. 1987. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Social American Journal 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
  11. Liu Z., Ge H., Li C., Zhao Z., Song F., and Hu S. 2015. Enhanced Phytoextraction of Heavy Metals from Contaminated Soil by Plant Co-Cropping Associated with PGPR. Water Air and Soil Pollution 226:29. https://doi.org/10.1007/s11270-015-2304-y.
  12. Nelson R.E. 1982. Carbonate and gypsum. In: Page AL(ed) Method of soil analysis. Part2, 2nd Agron Monogr.9. ASA and SSSA, Madison: 181-197.
  13. Norvell W.A., Wu J., Hopkins D.G., and Welch R.M. 2000. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Social American Journal 64: 2162–2168. https://doi.org/10.2136/sssaj2000.6462162x.
  14. Olsen S.R., Cole C.V., Watanabe F.S., and Dean L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ.939. U.S. Gov. Print office, Washington D.C.
  15. Pinto , Cruz M., Ramos P., Santos A., and Almeida A. 2017. Metals transfer from tobacco to cigarette smoke: Evidences insmokers’ lung tissue. Journal of Hazardous Materials 325: 31–35. https://doi.org/10.1016/j.jhazmat.2016.11.069.
  16. Renella G., Adamo P., Bianco M.R., Landi L., Violante P., and Nannipieri P. 2004. Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science 55: 123–133. https://doi.org/10.1046/j.1365-2389.2003.00586.x.
  17. Rhoades J. D. 1996. Sailinity: Electerical conductivity and total dissolved soilds. P.417-436. in D. Sparks et al. (ed.) Method of soil analysis. PartIII. 3rd Ed. Am. Soc. Agron., Medison. WI.
  18. Roberts T.L. 2014. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering 83: 52–59. https://doi.org/10.1016/j.proeng.2014.09.012.
  19. Salbu B., Krekling T., and Oughton D.H. 1998. Characterization of radioactive particles in the environment. Analystic 123: 843-849.
  20. Satarug S., Garrett S.H., Sens M.A., and Sens D.A. 2010.Cadmium, environ-mental exposure and health outcomes. Environ. Health Perspect 118: 182–190. https://doi.org/1289/ehp.0901234.
  21. Sato J.H., Célio de Figueiredo C., Marchão R.L., Madari B.E., Benedito L.E.C., Busato J.G., and Mendes de Souza D. 2014. Methods of soil organic carbon determination in Brazilian savannah soils. Science Agriculture 71(4)302-308. http://dx.doi.org/10.1590/0103-9016-2013-0306.
  22. Semu E., and Singh B.R. 1996. Accumulation of heavy metals in soils and plants after long-term use of fertilizers and fungicides in Tanzania. Fertilizer Research 44: 241–248.
  23. Seshadri B., Bolan N.S., Choppala G., Kunhikrishnan A., Sanderson P., Wang H., Currie L.D., Tsang D. C.W., Ok Y.S., and Kim G. 2017. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 184:197-206. https://doi.org/10.1016/j.chemosphere.2017.05.172.
  24. Singh J.P., Karwasra S.P.S., and Singh M. 1988. Distribution and forms of copper, iron, manganese and zinc in calcareous soils of India. Soil Science 146(5):359-366. https://doi.org/1097/00010694-198811000-00008.
  25. Sumner M.E., and Miller W.P. 1996. Cation exchange capacity and exchangeable coefficients. P.1201-1229. In D. Ed. Am. Soc. Agronomy, Medison, WI. https://doi.org/10.2136/sssabookser5.3.c40.
  26. Suwa R., Nguyen N.T., Saneoka H., Moghaib R., and Fujita K. 2006. Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Science and Plant Nutrition 52: 243–250. https://doi.org/10.1111/j.1747-0765.2006.00024.x.
  27. Thévenod F., and Lee W.K. 2013.Toxicology of cadmium and its damage to mammalian organs. Metabolism Ions Life Science 11: 415–490. https://doi.org/1007/978-94-007-5179-8_14.
  28. Thomas G.W. 1996. Soil pH and soil activity. P. 475-490. In D.L. Sparks et al. (ed.) Method of soil analysis. PartIII. 3rd Am. Soc. Agronomy Medison WI.
  29. United Nations Environment Program(UNEP) Chemicals Branch, DTIE. 2010. Final review of scientific information on cadmium –Version of December 2010.
  30. Usman A.R.A., Kuzyakov Y., and Stahr K. 2005. Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge contaminated soil. Soil Sediment Contam 14: 329–344. https://doi.org/10.1080/15320380590954051.
  31. Wagner G.J. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Advance Agronomy 51: 173–212. http://dx.doi.org/10.1016/S0065-2113(08)60593-3.
  32. Wangstrand H., Erikson J., and Oborn I. 2007. Cadmium concentration in winter wheat as affected by nitrogen fertilization. European Journal of Agronomy 26: 209-214. https://doi.org/10.1016/j.eja.2006.09.010.
  33. Waterlot C., Pruvot C., Marot F., and Douay F. 2017. Impact of a Phosphate Amendment on the Environmental Availability and Phytoavailability of Cd and Pb in Moderately and Highly Carbonated Kitchen Garden Soils. Pedosphere 27(3): 588–605. https://doi.org/10.1016/s1002-0160(17)60354-0.
  34. Wong M.H., Wong J.W.C., and Baker A.J.M. 1998. Remediation and Management of Degraded Lands. CRC Press, Florida, USA. https://doi.org/10.1201/9780203740897.
  35. World Health Organization (WHO). 2010. Exposure to Cadmium: A Major Public Health Concern. World Health Organization http://www.who.int/ipcs/features/cadmium.pdf.
  36. Zhao S., Feng C., Wang D., Liu Y., and Shen Z. 2013. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: Relative role of sediments’ properties and metal speciation. Chemosphere 91: 977–984. http://doi.org/10.1016/j.chemosphere.2013.02.001.

 

CAPTCHA Image