##plugins.themes.bootstrap3.article.main##

سمیرا سالاری مهدی پژوهش پژمان طهماسبی فرزانه نیکوخواه

چکیده

اگرچه مطالعات زیادی در خصوص اثر رهاسازی اراضی کشاورزی انجام گرفته است ولی اطلاعات بسیار کمی در خصوص تأثیر شرایط آب و هوایی بر احیاء زمین‌های کشاورزی بعد از رهاسازی آن‌ها وجود دارد. به همین منظور در این مطالعه اثر متقابل رهاسازی اراضی کشاورزی و شرایط اقلیمی بر ذخایر ماده آلی ذرات اولیه خاک مورد بررسی قرار گرفت. نمونه‌های مركب خاک از عمق 30-0 سانتی‌متری در سه تکرار از دو منطقه با شرایط بارندگی متفاوت شامل مناطق حفاظت‌شده شیدا و خرگوش در استان چهارمحال و بختیاری از چهار کاربری مرتع، اراضی کشاورزی و اراضی رها شده زراعی در توالی زمانی 15-10 و 40-15 سال، تهيه و ميزان توزیع كربن و نيتروژن در اجزای مختلف ذرات اولیه خاک تعيين گرديد. نتایج نشان داد که کشت و کار در اراضی بکر بسته به موقعیت اقلیمی می‌تواند اثرات مثبت و منفی بر اکوسیستم‌های طبیعی داشته باشد. به تبع در منطقه شیدا با وجود میزان بارندگی و وضعیت خوب پوشش طبیعی مراتع کشت و کار در اراضی بکر اثرات منفی در جهت کاهش ماده آلی داشته است. در حالی که در منطقه خرگوش با وجود میزان بارندگی اندک و کیفیت پایین مراتع، کشت و کار اثرات سوء ای نداشته است. در کلیه کاربری‌های مدیریتی مقدار کربن و نیتروژن به ترتیب در ذرات رس، سیلت و شن بیشتر بود. رهاسازی اراضی کشاورزی و مراتع در منطقه خرگوش تأثیری بر غلظت کربن و نیتروژن سه جزء شن، سیلت و رس نداشت اما در منطقه شیدا افزایش زمان رهاسازی کربن اجزای شن و سیلت را افزایش داد ولی تأثیری بر کربن جزء رس نداشت. نتایج نشان داد رهاسازی اراضی کشاورزی بسته به شرایط آب‌و‌هوایی هر منطقه جهت استقرار مجدد پوشش گیاهی و افزایش ترسیب کربن خاک می‌تواند اثرات متفاوت و بالقوه‌ای بر احیای کربن مراتع داشته باشد.

جزئیات مقاله

کلمات کلیدی

ذرات اولیه خاک, رهاسازی اراضی کشاورزی, کربن آلی و نیتروژن کل, مراتع بدون کشت و کار

مراجع
1- Ahmadi H., Heshmati G.H., Psrkly M., and Nasseri H.R. 2009. Comparison of carbon sequestration in desert and meadow forests to manage sandy land in south of salt lake. Thesis of the Ministry of Science and Research and Technology, Faculty of Agricultural Sciences and Natural Resources, Gorgan University, p. 75. (In Persian with English abstract)
2- Anderson D.W., and Paul E.A. 1984. Organo-mineral complexes and their study by radiocarbon dating. Soil Sci. Soc, Am, J., 48: 298-301.
3- Bremner J.M., and Mulvaney C.S. 1982. Nitrogen total. Pp: 595-624. In: Page AL. (ed.) Methods of Soil Analysis. Part 2, Chemical Analysis. ASA and SSSA. Madison, WI.
4- Bronick C.J., and Lal R. 2005. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil and Tillage Research 81: 239-252.
5- Caravaca F., and Roldan A. 2003. Effect of Eisenia foetida earthworms on mineralization kinetics, microbial biomass, enzyme activities, respiration and labile C fractions of three soils treated with a composted organic residue. Biology and Fertility of Soils 38: 45–51.
6- Caravaca F., Masciandro G., and Ceccanti B. 2002. Land use in relation to soil chemical and biochemical properties in a semi-arid Mediterranean environment. Soil and Tillage Research 68: 23-30.
7- Christensen B.T., and Sørensen L.H. 1985. The distribution of native and labelled carbon between soil particle size fractions isolated from long-term incubation experiments. Eur. J. Soil Sci. 36: 219-229.
8- Christensen B.T. 1987. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biology and Biochemistry 19: 429-435.
9- Christensen B.T. 1996. Carbon in primary and secondary organomineral complexes. Pp: 97-165. In: Carter MR and Stewart BA (eds). Structure and Organic Matter Storage in Agricultural Soils. CRC Press Inc., Boca Raton, FL.
10- Christensen B.T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345-353.
11- Gee G.W., and Bauder J.W. 1986. Particle-size analysis. Pp: 383-411. In: Klute A (ed). Methods of Soil Analysis. Physical and Mineralogical Methods. Part 1(2nd ed),
12- Golchin A., and Malakouti M.J. 1999. Maintenance and mobility of soil organic matter. Iranian Journal Soil and Water Science 13(1): 40-53.(In Farsi)
13- Gregorich E.G., Kachanoski R.G., and Voroney R.P. 1989. Carbon mineralization in soil size fractions after various amounts of aggregate disruption. Eur. J. Soil Sci. 40: 649-659.
14- Haile-Mariam S., Collins H.P., Wright S., and Paul E.A. 2008. Fractionation and long-term laboratory incubation to measure soil organic matter dynamics. Soil Sci. Soc. Am. J. 72: 370-378.
15- He N., Wu L., Wang Y., and Han X. 2009. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma 150: 302- 308.
16- Jafari S., Golchin A., and Tollabi fard A. 2016. The Effect of Land Use Change on the Properties of Physical Components of Organic Matter, Pressure Clay and Aggregate Stability in Some Lands of Khuzestan Province. Iran Water and Soil Research, Period 47, No 3, pp 603-593. (In Persian with English abstract)
17- Jagadamma S., and Lal R. 2010. Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and Fertility of Soils 46: 543-554.
18- Kandeler E., Stemmer M., and Klimanek E.M. 1999. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry 31: 261-273.
19- Lorenz K., Lal R., and Shipitalo M.J. 2008. Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biology and Fertility of Soils 44: 1043-1051.
20- Murage E.W., Voroney P.R., Kay B.D., Deen B., and Beyaert R.P. 2007. Dynamics and turnover of soil organic matter as affected by tillage. Soil Sci. Soc. Am. J. 71: 1363_1370.
21- Nadal-Romero E., Cammeraat E., Pérez-Cardiel E., and Lasanta T. 2016. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agriculture, Ecosystems & Environment 228: 91-100.
22- Nelson D.W., and Somners L.E. 1982. Total carbon, organic carbon, and organic matter. Pp: 539-579.
23- Novara A., Gristina L., Sala G., Galati A., Crescimanno M., Cerdà A., and LaMantia T. 2017. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Science of the Total Environment 576: 420-429
24- Olk D.C., and Gregorich E.G. 2006. Overview of the symposium proceedings, meaningful pools in determining soil carbon. Soil Science Society of America Journal 70: 967-974.
25- Preston C.N., Newman R.H., and Rother P. 1994. Using 13C CPMAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. Soil Sci. 157: 26-35.
26- Qiu L., Wei X., Zhang X., Cheng J., Gale W., Guo C., and Long T. 2012. Soil organic carbon losses due to land use change in a semiarid grassland. Plant and Soil 355(1-2): 299-309.
27- Raiesi F. 2007. The conversion of overgrazed pastures to almond orchards and alfalfa cropping systems may favor microbial indicators of soil quality in Central Iran. Agric Ecosyst Environ 121: 309–318.
28- Raiesi F. 2012. Soil properties and C dynamics in abandoned and cultivated farmlands in a semi-arid ecosystem. Plant Soil 351: 161–175
29- Salek-Gilani S., Raiesi F., Tahmasebi P., and Ghorbani N. 2013. Soil organic matter in restored rangelands following cessation of rainfed cropping in a mountainous semi-arid landscape. Nutrient Cycling in Agroecosystems 96(2-3): 215-232.
30- San Román Sanz A., Fernández C., Mouillot F., Ferrat I., Istria D., and Pasqualini V. 2013. Long-term forest dynamics and land use abandonment in the Mediterranean mountains, Coesica France. Ecol. Soc. 18 (2): 38.
31- Schahczenski J., and Hill H. 2009. Agriculture, Climate Change and Carbon Sequestration, ATTRA Publications, 16 pp.
32- Schuman G.E., Janzen H., and Herrick J.E. 2002. Soil carbon information and potential carbon sequestration by rangelands, Environmental Pollution, Vol 116. Pp: 391-396.
33- Six J., Guggenberger G., Paustian K., Haumaier L., Elliott E.T., and Zech W. 2001. Sources and composition of soil organic matter fractions between and within soil aggregate. European Journal of Soil Science: 52(4): 607-618.
34- Six J., Paustian K., Elliott E.T., and Combrink C. 2000. Soil structure and organic matter: I. distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64:681–689. Soil Use and Management 21: 38–52.
35- Spohn M., Novák T.J., Incze J., and Giani L. 2016. Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment–A chronosequence study. Plant and Soil 401(1-2): 185-196.
36- Stemmer M., Gerzabeki M.H., and Kandeler E. 1998. Organic matter and enzyme activity in particlesize fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry 30: 9-17.
37- Wagai R., Mayer L.M., and Kitayama K. 2009. Nature of the occluded low density fraction in soil organic matter studies: A critical review. Soil Science and Plant Nutrition 55: 13-25.
38- Wertebach T.M., Hölzel N., Kämpf I., Yurtaev A., Tupitsin S., Kiehl K., and Kleinebecker T. 2017. Soil carbon sequestration due to post‐Soviet cropland abandonment: estimates from a large‐scale soil organic carbon field inventory. Global Change Biology.
39- Zhang Z.D., Yang X.M., Drury C.F., Reynolds W.D., and Zhao L.P. 2010. Mineralization of active soil organic carbon in particle size fractions of a Brookston clay soil under no-tillage and mouldboard plough tillage. Canadian Journal of Soil Science 90(4): 551-557.
ارجاع به مقاله
سالاریس., پژوهشم., طهماسبیپ., & نیکوخواهف. (2019). اثر متقابل رهاسازی اراضی و شرایط اقلیمی بر ذخایر ماده آلی در ذرات اولیه خاک در مراتع مناطق استپی. آب و خاک, 431-443. https://doi.org/10.22067/jsw.v0i0.72947
نوع مقاله
علمی - پژوهشی