##plugins.themes.bootstrap3.article.main##

سارا ملاعلی عباسیان فرحناز داشبلاغی غلامرضا مهدوی نیا

چکیده

در این مطالعه، کارایی جذب کیتوسان اتصال عرضی یافته با کاپاکاراگینان برای پاکسازی آب و خاک آلوده به فلز سنگین کادمیم به طور مجزا مورد بررسی قرار گرفت. جذب و واجذب کادمیم توسط جاذب زیستی در سیستم تعادلی یا پیمانه­ایی انجام شد. مطالعه جذب و واجذب کادمیم توسط کیتوسان مورد مطالعه (g/L 11/1) در دامنه غلظتی 97/1-0 میلی مولار کادمیم در pH معین 6/7 در قدرت یونی 8 میلی مولار انجام گردید. به منظور تعیین واجذبی کادمیم جذب شده توسط کیتوسان اصلاح شده، به هر کدام از نمونه کیتوسان­های باقیمانده از آزمایش جذب، 90 میلی­لیتر EDTA 1/0 مولار افزوده شد. مدل های فرندلیچ و لنگموئیر بر داده های حاصل برازش یافت. بهترین مدل بوسیله ضریب تبیین (r2) و ریشه میانگین مربعات خطا (RMSE) انتخاب گردید. نتایج بیانگر آن است که معادله فرندلیچ در مقایسه با معادله لنگموئیر در هر دو سیستم آب و خاک بخوبی بر داده برازش یافت. ماکزیمم پتانسیل جذب توسط کیتوسان مورد مطالعه در سیستم آب برابر 750 میکرومول بر گرم و در سیستم خاک برابر 993 میکرومول بر گرم بدست آمد. یافته­های این پژوهش نشان داد که جاذب مورد استفاده می­تواند جاذب زیستی مناسب­تری برای حذف کادمیم در سیستم خاک در مقایسه با سیستم آب معرفی شود چرا که بدلیل مقادیر پایین کادمیم واجذبی در سیستم آب، استفاده مجدد از جاذب مذکور در آن سیستم به آسانی مقدور نمی­باشد.

جزئیات مقاله

کلمات کلیدی

جذب, واجذب, فرندلیچ, لنگموئیر

مراجع
1. Alvarez M.T., Crespo C., and Mattiasson B. 2007. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66: 1677-1683.
2. Dabrowski A., Hubicki Z., Podkoscielny P., and Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56:91-106.
3. Essington, M. E. 2004. “Soil and wáter chemistry, an integrative approach. CRC Press LLC”.
4. Escobar C., Soto-Salazar C., and Toral I. 2006. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. Journal of Environmental Management, 81(4):384-391.
5. Gee G.W., and Or D. 2002. Particle-size analysis. In: J.H. Dane and G. C. Topp (eds.). Methods of Soil Analysis: Physical Methods, Part 4. Soil Science Society of America, Inc. Madison, WI, USA, 255-295.
6. Grenha A., Gomes M.E., Rodrigues M., Santo V.E., Mano J.F., Neves N.M., and Reis, R.L. 2010. Development of new chitosan/carrageenan nanoparticles for drug delivery applications, Journal of Biomedical Materials, Part A 92:1265-1272.
7. Igberase E. and Osifo P. 2015. Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution, Journal of Industrial and Engineering Chemistry, 26: 340-347.
8. Igberase E., Osifo P., and Ofomaja, A. 2014. The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1): 362-369.
9. Jenkins D. W., and Hudson S. M. 2001. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chemical Reviews, 101(11): 3245-3274.
10. Karimi, M.H., Mahdavinia, G. R., Massoumi, B., Baghban, A., and Saraei, M. 2018. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. International journal of biological macromolecules, 113: 361-375.
11. Kamari A., Pulford I. D., and Hargreaves J. S. J. 2011. Binding of heavy metal contaminants onto chitosans-an evaluation for remediation of metal contaminated soil and water. Journal of environmental management, 92(10): 2675-2682.
12. Kheriji J., Tabassi D., and Hamrouni B. 2015. Removal of Cd (II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Science and Technology, 72(7):1206-1216.
13. Kim H. R., Jang J. W., and Park J. W. 2016. Carboxymethyl chitosan‐modified magnetic‐cored dendrimer as an amphoteric adsorbent. Journal of Hazardous Materials, 317: 608‐616.
14. Landaburu-Aguirre J., Garcıa V., Pongracz E., and Keiski R.L. 2009. The removal of zinc from synthetic wastewaters by micellar- nhanced ultrafiltration: Statistical design of experiments. Desalination, 240:262-269.
15. Laus R., Costa T. G., Szpoganicz B., and Fávere V. T. 2010. Adsorption and desorption of Cu (II), Cd (II) and Pb (II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials, 183(1-3): 233-241.
16. Liu X., Hu Q., Fang Z., Zhang X., and Zhang B. 2008. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal, Langmuir, 25: 3-8.
17. Lv P., Bin Y., Li Y., Chen R., Wang X., and Zhao B. 2009. Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer, 50(24): 5675-5680.
18. Medina B.Y., Torem M.L., and de Mesquita L.M.S. 2005. On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Minerals Engineering, 18:225-231.
19. Mola Ali Abasiyan S., and Mahdavinia G. R. 2018. Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environmental Science and Pollution Research International, 25(15):14977-14988.
20. Morrow H., 2001. Environmental and human health impact assessments of battery systems. In Industrial chemistry library. Elsevier, 10: 1-34.
21. Muzzarelli R. A., 1973. Natural chelating polymers; alginic acid, chitin and chitosan. InNatural chelating polymers; alginic acid, chitin and chitosan. Pergamon Press.
22. Naidu R., and Harter R.D. 1998. Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Science Society America Journal, 62: 644-650.
23. Nelson D. W., and Sommers L. E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis part 3-chemical methods, (Methods of Soil Analysis), 961-1010.
24. Osifo P. O., Neomagus H. W., Everson R. C., Webster A., and vd Gun M. A. 2009. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration. Journal of Hazardous Materials, 167(1-3): 1242-1245.
25. Qin, F., Shan, X., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57: 253–263.
26. Reddy D. H., and Lee S. M. 2013. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid & Interface Science, 202(4): 68‐93.
27. Sparks D. L., Helmke P. A., and Page A. L. 1996. Methods of soil analysis: Chemical methods (No. 631.417/S736 V. 3). SSSA.
28. Sposito G. 1980. Derivation of the Freundlich Equation for Ion Exchange Reactions in Soils1. Soil Science Society of America Journal, 44(3): 652-654.
29. Yuwei C., and Jianlong W. 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. Chemical Engineering Journal, 168(1): 286-292.
ارجاع به مقاله
ملاعلی عباسیانس., داشبلاغیف., & مهدوی نیاغ. (2019). کاربرد کیتوسان اتصال عرضی یافته با کاپاکاراگینان در حذف یون¬های کادمیم از محلول¬های آبی و خاکی. آب و خاک, 32(6), 1223-1234. https://doi.org/10.22067/jsw.v32i6.75071
نوع مقاله
علمی - پژوهشی