##plugins.themes.bootstrap3.article.main##

اکبر کریمی عبدالامیر معزی مصطفی چرم نعیمه عنایتی ضمیر

چکیده

هدف از این پژوهش بررسی تأثیر کاربرد زغال­های زیستی تهیه شده از باگاس نیشکر در دماهای مختلف بر تغییرات شکل­های شیمیایی روی در یک خاک آهکی بود. به این منظور زغال­های زیستی تهیه شده در دماهای 200 (B200)، 350 (B350) و 500 (B500) درجه سلسیوس در سطوح 1 و 2 درصد وزنی با نمونه خاک ترکیب شدند. نمونه­ها به­مدت سه ماه در شرایط انکوباسیون و در دمای ثابت نگهداری شدند. در پایان آزمایش از خاک­های تیمار شده نمونه­برداری شد و برخی ویژگی­های شیمیایی خاک و شکل­های شیمیایی روی در خاک اندازه­گیری شدند. نتایج نشان داد کاربرد هر سه نوع زغال زیستی سبب افزایش ظرفیت تبادل کاتیونی و کربن آلی خاک شد. pH خاک در تیمارهای B200 کاهش یافت، اما در تیمارهای B350 و B500 افزایش یافت. غلظت شکل تبادلی روی در خاک تیمار شده با زغال­های زیستی B350، B500 به­ترتیب 2/5 و 2/14 درصد کاهش یافت، اما در تیمار B200، 0/17 درصد افزایش یافت. کاربرد هر یک از زغال­های زیستی B200، B350 و B500 سبب افزایش شکل­های کربناتی (به­ترتیب 5/4، 2/13 و 3/23 درصد) و آلی (به­ترتیب 3/83، 3/6 و 2/9 درصد) روی در خاک شد. کم­ترین غلظت شکل باقی­مانده روی مربوط به خاک تیمار شده با زغال زیستی B200 بود. نتایج همچنین نشان داد که بیش­ترین تغییرات شکل­های شیمیایی روی در خاک مربوط به سطح کاربرد 2 درصد زغال­های زیستی بود. به­طور کلی می­توان نتیجه­گیری کرد کاربرد زغال زیستی تهیه شده از باگاس نیشکر در دمای گرماکافت 200 درجه سلسیوس (به­ویژه در سطح 2 درصد وزنی) می­تواند با کاهش شکل باقی­مانده روی و افزایش شکل­های با فراهمی نسبتاً بیش­تر از جمله شکل تبادلی، در بهبود فراهمی روی در خاک­های آهکی مؤثر باشد. 

جزئیات مقاله

کلمات کلیدی

اصلاح کننده¬های آلی, دمای گرماکافت, عصاره¬گیری دنباله¬ای, فراهمی روی

مراجع
1. Abbas T., Rizwan M., Ali S., Zia-ur-Rehman M., Qayyum M.F., Abbas F., Hannan F., Rinklebe J., and Ok Y.S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety 140: 37-47.
2. Al‐Wabel M.I., Al‐Omran A., El‐Naggar A.H., Nadeem M., and Usman A.R. A. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131: 374–379.
3. Al‐Wabel M.I., Hussain Q., Usman A.R., Ahmad M., Abduljabbar A., Sallam A.S., and Ok Y.S. 2017. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development 29: 2124-2161.
4. Boostani H.R. 2018. Effect of organic manures, their biochars and arbuscular mycorrhizae fungi on distribution of zinc chemical fractions in a calcareous soil. Journal of Water and Soil Conservation 24(5): 49-75. (In Persian with English abstract)
5. Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., and Ro K.S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107: 419-428.
6. Carter M.R., and Gregorich E.G. 2008. Soil sampling and methods of analysis (2nd ed). CRC Press. Boca Raton. FL. 1204 p.
7. Corre M.D., Schnabel R.R., and Shaffer J.A. 1999. Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and Biochemistry 31: 1531-1539.
8. Dai Sh., Hui Li H., Yang Zh., Dai M., Dong X., Ge X., Sun M., and Shi L. 2018. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil, Human and Ecological Risk Assessment: An International Journal 24(7): 1887-1900.
9. Dehghanian H., Halajnia A., Lakzian A., and Astaraei A.R. 2018. The effect of earthworm and arbuscular mycorrhizal fungi on availability and chemical distribution of Zn, Fe and Mn in a calcareous soil. Applied Soil Ecology 130: 98-103.
10. Doelsch E., Masion A., Moussard G., Chevassus-Rosset C., and Wojciechovwicz O. 2010. Impact of pig slurry and green waste compost application on heavy metal exchangeable fractions in tropical soils. Geoderma 155: 390–400.
11. Domingues R.R., Trugilho P.F., Silva C.A., de Melo I.C.N., Melo L.C., Magriotis Z.M., and Sánchez-Monedero M.A. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one 12(5): 0176884.
12. El-Mahrouky M., El-Naggar A.H., Usman A.R., and Al-Wabel M. 2015. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with Conocarpus waste and biochar. Pedosphere 25(1): 46–56.
13. Fellet G., Marchiol L., Vedove G.D., and Peressotti A. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 83(9): 1262–67.
14. Gul S., Whalen J.K., Thomas B.W., Sachdeva V., and Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems and Environment 206: 46-59.
15. Hosseinpur A.R., and Motaghian H.R. 2017. The effect of cow manure and vermicompost application on fractionation and availability of Zinc and Copper in Wheat planting. Journal of Water and Soil 30(6): 2005-2018.
16. Ippolito J.A., J.M. Novak W.J. Busscher M. Ahmedna D. Rehrah and Watts D.W. 2012. Switchgrass biochar affects two Aridisols. Journal of Environmental Quality 41: 1123–1130.
17. Ippolito J.A., Ducey T.F., Cantrell K.B., Novak J.M., and Lentz R.D. 2016. Designer, acidic biochar influences calcareous soil characteristics. Chemosphere 142: 184–191.
18. Karami M., Afyuni M., Khoshgoftarmanesh A.H., Papritz A., and Schulin R. 2009. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. Journal of Agricultural and Food Chemistry 57(22): 10876-10882.
19. Karimi A., Moezzi A., Chorom M., Enayatizamir N. 2019. Investigation of physicochemical characteristics of biochars derived from corn residue and sugarcane bagasse in different pyrolysis temperature. Iranian Journal of Soil and Water Research 50(3): 725-739. (In Persian with English abstract)
20. Khadem A., Raiesi F., and Besharati H. 2018. The effect of corn biochar on chemical and microbiological properties of two calcareous soils with clayey and sandy texture. Journal of Soil Management and Sustainable Production 8(1): 25-47. (In Persian with English abstract)
21. Laird D., Fleming P., Wang, B., Horton R., and Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3-4): 436-442.
22. Lehmann J., and Joseph S. (Eds.). (2015). Biochar for environmental management: science, technology and implementation. Routledge.
23. Lindsay W.L., and Norvel W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421-428.
24. Liu X.H., and Zhang X.C. 2012. Effect of biochar on pH of alkaline soils in the Loess Plateau: results from incubation experiments International Journal of Agriculture and Biology 4: 745–750.
25. Mete F., Mia S., Dijkstra F.A., Abuyusuf M., and Iqbal Hossain A.S.M. 2015. Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere 25(5): 713-719.
26. Moradi N., Rasouli-Sadaghiani M.H., and Sepehr E. 2017. Effect of biochar types and rates on some soil properties and nutrients availability in a calcareous soil. Journal of Water and Soil 31(4): 1232-1246. (In Persian with English abstract)
27. Naeem M.A., Khalid M., Aon M., Abbas G., Tahir M., Amjad M., Murtaza B., Yang A., and Akhtar S.S. 2017. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science 63(14): 2048-2061.
28. Najafi G., Ghobadian B., Tavakoli T., and Yusaf T. 2009. Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews 13(6-7): 1418-1427.
29. Namgay T., Singh B., and Singh B.P. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research 48: 638–647.
30. Nelson D.W., and Sommers L.E. 1996. Carbon, organic carbon and organic matter. P 961-1010, In: D.L. Sparks (Ed.), Methods of Soil Analysis. SSSA, Madison.
31. Ouyang L., Tang Q., Yu L., and Zhang R. 2014. Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Research 52(7): 706-716.
32. Preetha P.S., and Stalin P. 2014. Different Forms of Soil Zinc-their Relationship with Selected Soil Properties and Contribution towards Plant Availability and Uptake in Maize Growing Soils of Erode District, Tamil Nadu. Indian Journal of Science and Technology 7(7): 1018-1025.
33. Qi F., Dong Z., Lamb D., Naidu R., Bolan N.S., Ok Y.S., Liu C., Khan N., Johir M.A.H., and Semple K.T. 2017. Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere 180: 564-573.
34. Rengel Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition. Journal of Soil Science and Plant Nutrition 15(2): 397-409.
35. Sadegh‐Zadeh F., Parichehreh M., Jalili M., and Bahmanyar M.A. 2018. Rehabilitation of calcareous saline‐sodic soil by means of biochars and acidified biochars. Land Degradation and Development, DOI: 10.1002/ldr.3079.
36. Shahbazi K., and Besharati H. 2013. Overview of Agricultural Soil Fertility Status of Iran. Land Management Journal 1(1): 1-15. (In Persian with English abstract)
37. Sheng Y., and Zhu L. 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment 622–623: 1391–1399.
38. Singh B., Camps-Arbestain M., and Lehmann J. (Eds.). 2017. Biochar: a guide to analytical methods. Csiro Publishing.
39. Song D., Xi X., Huang S., Liang G., Sun J., Zhou W., and Wang X. 2016. Short-term responses of soil respiration and C-cycle enzyme activities to additions of biochar and urea in a calcareous soil. PloS one 11(9): 0161694.
40. Song D., Tang J., Xi X., Zhang S., Liang G., Zhou W., and Wang X. 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. European Journal of Soil Biology 84: 1-10.
41. Sposito G., Lund L.J., and Chang A.C. 1982. Trace Metal Chemistry in Arid-zone Field Soils Amended with Sewage Sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in Solid Phases 1. Soil Science Society of America Journal 46(2): 260-264.
42. Tan X., Liu Y., Gu Y., Zeng G., Wang X., Hu X., Sun Z., and Yang Z. 2015. Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research 22(16): 12597-12604.
43. Tessier A., Campbell P.G., and Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7): 844-851.
44. Wang P., Zhou D.M., Luo X.S., and Li L.Z. 2009. Effects of Zn-complexes on zinc uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. Plant and Soil 316(1-2): 177-192.
45. Yang X., Lu K., McGrouther K., Che L., Hu G., Wang Q., Liu X., Shen L., Huang H., Ye Z., and Wang H. 2017. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments 17(3): 751-762.
46. Yue Y., Cui L., Lin Q., Li G., and Zhao X. 2017. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 173: 551–556.
47. Zahedifar M. 2017. Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw derived biochar. Journal of Geochemical Exploration 182: 22-31.
48. Zeng G., Wu H., Liang J., Guo S., Huang L., Xu P., Liu Y., Yuan Y., He X., and He Y. 2015. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. Rsc Advances 5(44): 34541-34548.
49. Zhao B., O'Connor D., Zhang J., Peng T., Shen Z., Tsang D.C., and Hou D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production 174: 977-987.
ارجاع به مقاله
کریمیا., معزیع., چرمم., & عنایتی ضمیرن. (2019). تأثیر زغال زیستی باگاس نیشکر بر توزیع شکل¬های شیمیایی روی در یک خاک آهکی. آب و خاک, 445-461. https://doi.org/10.22067/jsw.v0i0.75162
نوع مقاله
علمی - پژوهشی