دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

نقشه‌های خاک نقش کلیدی در مدیریت کشاورزی و منابع طبیعی دارند. در این مطالعه تکنیک‌های پردازش تصویر شامل ترکیبات باندی، آنالیزهای مؤلفه اصلی و طبقه‌بندی بر تصویر سنجنده TM بمنظور تهیه نقشه خصوصیات فیزیکی و شیمیایی خاک منطقه ورزنه اصفهان اعمال شد. جهت برقراری ارتباط بین تصاویر حاصله و داده‌های میدانی با استفاده از روش نمونه‌برداری تصادفی-سیستماتیک، 53 نمونه خاک بکمک سامانه GPS برداشت و سپس نقشه‌های پیوسته هر خصوصیت خاک با استفاده از آنالیز رگرسیونی ساده و چند متغیره خطی با میانگین‌گیری از 9 پیکسل اطراف نقاط نمونه‌برداری تهیه شد. نتایج رگرسیون چند متغیره نشان داد که قوی‌ترین رابطه بین خاک شنی و باندهای 1، 2، 3، 4 و 5 سنجنده TM وجود دارد و مدل مربوطه بیش از 83% تغییرات این ویژگی را توجیه می‌کند. ضعیف‌ترین مدل رگرسیونی بین خصوصیت کربنات کلسیم خاک و باندهای 3، 5 و 7 مشاهده شد. در برخی موارد مدل های رگرسیونی چند متغیره پیش بینی کننده‌های مناسبی از ویژگیهای خاک نبودند، در نتیجه باند TM یا مولفه اصلی که بیشترین همبستگی را با داده‌های زمینی بر مبنای آنالیز رگرسیونی ساده نشان داد (سطح اطمینان 99%)، جهت طبقه‌بندی نظارت شده با الگوریتم حداکثر احتمال، انتخاب گردید. با توجه به نتایج ماتریس خطا، صحت کلی نقشه‌ها بین 85 تا 93% به ترتیب برای کلر و سیلت خاک بدست آمد. همانطوری مشخص است نقشه‌های طبقه‌بندی شده صحت بالاتری را نسبت به مدل‌های رگرسیونی نشان دادند. بنابراین بمنظور داشتن یک دید کلی از خصوصیات خاک منطقه می‌توان گفت تکنیک‌های طبقه‌بندی کاربردی تر از مدل‌های رگرسیونی می‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Spatial Distribution Analysis of Soil Properties in Varzaneh Region of Isfahan Using Image Processing Techniques

نویسندگان [English]

  • F. Mahmoodi
  • R. Jafari
  • H. Karimzadeh
  • N. Ramezani

Isfahan University of Technology

چکیده [English]

Introduction: Use of remote sensing for soil assessment and monitoring started with the launch of the first Landsat satellite. Since then many other polar orbiting Earth-observation satellites such as the Landsat series, have been launched and their imagery have been used for a wide range of soil mapping. The broad swaths and regular revisit frequencies of these multispectral satellites mean that they can be used to rapidly detect changes in soil properties. Arid and semi-arid lands cover more than 70 percent of Iran and are very prone to desertification. Due to the broadness, remoteness, and harsh condition of these lands, soil studies using ground-based techniques appear to be limited. Remote sensing imagery with its cost and time-effectiveness has been suggested and used as an alternative approach for more than four decades. Flood irrigation is one of the most common techniques in Isfahan province in which 70% of water is lost through evaporation. This system has increased soil salinization and desert-like conditions in the region. For principled decision making on agricultural product management, combating desertification and its consequences and better use of production resources to achieve sustainable development; understanding and knowledge of the origin, amount and area of salinity, the percentage of calcite, gypsum and other mineral of soil in each region is essential. Therefore, this study aimed to map the physical and chemical characteristics of soils in Vazaneh region of Isfahan province, Iran.
Materials and Methods : Varzaneh region with 75000 ha located in central Iran and lies between latitudes 3550234 N and 3594309 N and longitudes 626530 E to 658338 E. The climate in the study area is characterized by hot summers and cold winters. The mean daily maximum temperature ranges from 35°C in summer to approximately 17°C in winter and mean daily minimum temperature ranges from 5°C in summer to about -24.5°C in winter. The mean annual evaporation rate is 3265 mm. In this study, image processing techniquess including band combinations, Principal Component Analysis (PC1, PC2 and PC3), and classification were applied to a TM image to map different soil properties. In order to prepare the satellite image, geometric correction was performed. A 1:25,000 map (UTM 39) was used as a base to georegister the Landsat image. 40 Ground Control Points (GCPs) were selected throughout the map and image. Road intersections or other man-made features were appropriate targets for this purpose. The raw image was transformed to the georectified image using a first order polynomial, and then resampled using the nearest neighbour method to preserve radiometry. The final Root Mean Square (RMS) error for the selected points was 0.3 pixels. To establish relationships between image and field data, stratified random sampling techniques were used to collect 53 soil samples at the GPS (Global Positioning System) points. The continuous map of soil properties was achieved using simple and multiple linear regression models by averaging 9 image pixels around sampling sites. Different image spectral indices were used as independent variables and the dependent variables were field- based data.
Results and Discussion: The results of multiple regression analysis showed that the strongest relationships was between sandy soil and TM bands 1, 2, 3, 4, and 5, explaining up to 83% of variation in this component. The weakest relationship was found between CaCo3 and 3, 5, and 7 TM bands. In some cases, the multiple regressions was not an appropriate predicting model of soil properties, therefore, the TM and PC bands that had the highest relationship with field data (confidence level, 99%) based on simple regression were classified by the maximum likelihood algorithm. According to error matrix, the overall accuracy of classified maps was between 85 and 93% for chlorine (Cl) and silt componets, repectively.
Conclusions: The results indicated that the discretely classified maps had higher accuracy than regression models. Therefore, to have an overview of soil properties in the region, classification techniques appears to be more applicable than regression models. The findings of this study shows that the extracted maps of the physical and chemical characteristics of soils can be used as a suitable tool for field operations, cambating desertification and rehabilitation purposes and compared to maps that are created by traditional methods, our final maps have more economically and time saving advantages. Therefore, they can be used as an adjunct to field methods to aid the assessment and monitoring of soil condition in the arid regions of Isfahan province.

کلیدواژه‌ها [English]

  • Image classification
  • Multiple linear regressions
  • Remote sensing
  • Soil properties
Alavi Panah K. 2003. Application of remote sensing in geosciences, Tehran University, Tehran (In Persian).
2- Ali R.R., and Kotb M.M. 2010. Use of satellite data and GIS for soil mapping and capability assessment. Nature and Science, 8 (8): 104-115.
3- Ali R.R., and Moghanm F.S. 2013. Variation of soil properties over the landforms around Idku Lake, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 16 (1): 91-101.
4- Eldeiry A., Garcia L.A., and Reich R.M. 2005. Estimating soil salinity from remote sensing data in Corn fields. Hydrology Days, 49: 31-42.
5- Emadi, M., Baghernejad M., Emadi M., and Maftoun M. 2008. Assessment of some soil properties by spatial variability in saline and sodic soils in Arsanjan plain, Southern Iran. Pakistan Journal of Biological Sciences, 11 (2): 238-243.
6- Farifteh J. 2007. Imaging spectroscopy of salt-affected soils: Model-based integrated method, in ITC dissertation, Utrecht University: the Netherlands.
7- Farifteh J., Farshad A., and George R. 2006. Assessing salt-affected soils using remote sensing, solute modelling and geophysics, Geoderma 130: 191-206.
8- Fernandez-Bucesa N., Siebea C., Cramb S., and Palacio J.L. 2006. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico. Journal of Arid Environments, 65: 644–667.
9- Forest range waterdshed organization Isfahan province, 1994, Segzi plain dedesertification project, frw organization (In Persian).
10- Fox G.A., and Metla R. 2005. Soil property analysis using principal components analysis, soil Line, and regression models. Soil Science Society of America Journal, 69: 1782–1788.
11- Jafari Haghighi, M. 2003. Methods of soil analysis sampling and important physical & chemical analysis, Neda Zoha, Tehran (In Persian).
12- Howari F., Goodell P., and Miyamoto S. 2002. Spectral properties of salt crusts formed on saline soils. Journal of Environmental Quality, 31: 1453-1461.
13- Kappa M., Shawan A., and Erasmi S. 2005. Remote sensing based classification of salt affected soils as an indicator for landscape degradation in the south of Aleppo, Syria, in UN convention to combat desertification, Trier, Germany.
14- Keshavarzi A., and Sarmadian F. 2012. Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 44 (1): 3-14.
15- Khajeddine S.J.A. 1995. Survey of the plant communities of Jazmorian Iran using landsat Mss Data, in Department of Botany, PhD thesis, University of Reading.
16- Mahmoodi F. 2011. Investigating the Potential of Remote Sensing Data in Producing Soil Salinity and Alkalinity Map in Southeastern Isfahan, MSc. Thesis, Isfahan University of Technology (In Persian with English abstract).
17- Martınez-Montoya J.F., Herrero J., and Casterad M.A. 2010. Mapping categories of gypseous lands in Mexico and Spain using Landsat imagery. Journal of Arid Environments, 74 (8): 978-986.
18- Melendez-Pastor I., Navarro-Pedreño J., Gomez I., and Koch M. 2008. Identifying optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils. Geoderma: 147 (3-4): 126-132.
19- Metternicht G., and Zinck J.A. 2008. PART I: Soil Salinity and Remote Sensing: The Object and the Tool, Chapter 1: Soil Salinity and Salinization Hazard, in Remote sensing of soil salinization impact on land management, G. Metternicht and J.A. Zinck, Editors. 2008, CRC Press: London, New York.
20- Metternicht G., and Zinck J.A. 2008. PART I: Soil Salinity and Remote Sensing: The Object and the Tool, Chapter 2: Soil Salinity and Salinization Hazard, in Remote sensing of soil salinization impact on land management, G. Metternicht and J.A. Zinck, Editors. 2008, CRC Press: London, New York.
21- Metternicht G.I., and Zinck J.A. 1996. Modelling salinity–alkalinity classes for mapping salt-affected topsoils in the semi-arid valleys of Cochabamba (Bolivia). Interdenominational Theological Center Journal, 2: 125-135.
22- Metternicht G.I., and Zinck J.A. 2003. Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85: 1-20.
23- Moreau S.S. 1996. Application of remote sensing and GIS to the mapping of saline/sodic soils and evaluation of villarroel, central Altiplano, Boivia. In The 4th international symposium on High Mountain remote sensing cartography, Karlstad, Kiruna.
24- Mougenot B., Epema G., and Pouget M. 1993. Remote sensing of salt affected soils. Remote Sensing Reviews, 7: 241-259.
25- Mulders M., 1987. Remote Sensing in Soil Science. Elsevier.
26- Naiej Noori, R. 2002. Feasibility study of analysis of saline and chalky lands in Kashan plain using TM data. MSc. Thesis, Isfahan University of Technology (In Persian with English abstract).
27- Robbins M.A. and Wiegard C.L. 1990. Field and laboratory measurements. In, Tanji K.K. (Ed). Agricultural Salinity Assesment and Manegement, American Society of civil Engineers: New York.
28- Salisbury J.W., and Aria D.N. 1992. Infrared (8-14µm) remote sensing of soil particle size. Remote Sensing of Environment, 42:157-165.
29- Schott J.R. 1997. Remote sensing: The image chain approach. Oxford University.
30- Tutorial. 2010. Fundamentals of Remote Sensing Satellites and Sensors Spatial Resolution, Pixel Size, and Scale, Internet, Available at http://www.ccrs.nrcan.gc.ca. (Visited 27 October 2010).
31- Ziaie D. 2008. Investigating soil proprties using remote sensing in Isfahan, MSc. Thesis, Isfahan Universty of Technology (In Persian with English abstract).
CAPTCHA Image