کاربرد کیتوسان اتصال عرضی یافته با کاپاکاراگینان در حذف یون‌های کادمیم از محلول‌های آبی و خاکی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه مراغه

چکیده

در این مطالعه، کارایی جذب کیتوسان اتصال عرضی یافته با کاپاکاراگینان برای پاکسازی آب و خاک آلوده به فلز سنگین کادمیم به طور مجزا مورد بررسی قرار گرفت. جذب و واجذب کادمیم توسط جاذب زیستی در سیستم تعادلی یا پیمانه­ایی انجام شد. مطالعه جذب و واجذب کادمیم توسط کیتوسان مورد مطالعه (g/L 11/1) در دامنه غلظتی 97/1-0 میلی مولار کادمیم در pH معین 6/7 در قدرت یونی 8 میلی مولار انجام گردید. به منظور تعیین واجذبی کادمیم جذب شده توسط کیتوسان اصلاح شده، به هر کدام از نمونه کیتوسان­های باقیمانده از آزمایش جذب، 90 میلی­لیتر EDTA 1/0 مولار افزوده شد. مدل های فرندلیچ و لنگموئیر بر داده های حاصل برازش یافت. بهترین مدل بوسیله ضریب تبیین (r2) و ریشه میانگین مربعات خطا (RMSE) انتخاب گردید. نتایج بیانگر آن است که معادله فرندلیچ در مقایسه با معادله لنگموئیر در هر دو سیستم آب و خاک بخوبی بر داده برازش یافت. ماکزیمم پتانسیل جذب توسط کیتوسان مورد مطالعه در سیستم آب برابر 750 میکرومول بر گرم و در سیستم خاک برابر 993 میکرومول بر گرم بدست آمد. یافته­های این پژوهش نشان داد که جاذب مورد استفاده می­تواند جاذب زیستی مناسب­تری برای حذف کادمیم در سیستم خاک در مقایسه با سیستم آب معرفی شود چرا که بدلیل مقادیر پایین کادمیم واجذبی در سیستم آب، استفاده مجدد از جاذب مذکور در آن سیستم به آسانی مقدور نمی­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Chitosan Cross-linked with κ-Carrageenan for Removal of Cadmium Ions from Water and Soil Systems

نویسندگان [English]

  • Sara Molaali abasiyan
  • Farahnaz Dashbolaghi
  • Gholamreza Mahdavinia
University of Maragheh
چکیده [English]

Introduction: Due to the negative effects on human being health, the decrease of cadmium bioavailability in waters and soils is necessary. The main origins of cadmium ions in environment consist of batteries, phosphate fertilizers, mining, pigments, stabilizers, and alloys. Many methods such as ion exchange, chemical precipitation, flotation, ultrafiltration, nanofiltration membranes, reverse osmosis, and electrocoagulation have been used for the removal of cadmium. Notably, adsorption is proven the most practical technique for heavy metal ions removal of pollutants from wastewater and contaminated soils. Among the various adsorbents, chitosan has introduced to be an efficient one, due to its unique characteristics such as antimicrobial activity, biocompatibility, non-toxicity, and being low-cost bio-adsorbent. Chitosan is a derivative of N-deacetylated of chitin, a naturally occurring polysaccharide taken from crustaceans i.e. shrimps and crabs, and fungal biomass. The presence of amine and hydroxyl groups in the backbone of chitosan gives the polymer its high binding capacity in adsorption processes. Chitosan can decrease the metal ion concentration to near zero. This work evaluates the modified chitosan’s potential as a bio-adsorbent in the water system and also its potential as a soil amendment in the soil system in terms of the adsorption and desorption of Cd2+. It is also worth noting that there is no report on the removal of cadmium ions by ionically crosslinked chitosan/κ-carrageenan materials, especially in soil systems.
Materials and Methods: The chitosan-based magnetic bio-adsorbent was prepared through in situ co-precipitation of iron ions in the presence of chitosan with high molecular weight. The surface (0-30cm) soil samples were collected from a field in University of Maragheh in the North East of Iran. Some physio- chemical properties of the soil used in this study were determined. Adsorption of cadmium on the bio-adsorbent was investigated using batch experiments. After adsorption, the adsorbent loaded with cadmium ions was washed with distilled water before treating it with 90 ml of 0.1M ethylenediaminetetraacetic acid (EDTA) for the determination of the metal desorption. The experimental data of Cd2+ adsorption and desorption isotherm were fitted by Freundlich and Longmuir models.
Results and Discussion: The crystalline nature and phase analysis for pure chitosan and magnetic chitosan bio-adsorbent was confirmed by XRD analysis. The diffractogram of chitosan consisted of two typical crystalline peaks at 2θ= 10.8A° and 20.42A°, corresponding to the partial crystalline structure of chitosan and the hydrated crystals of the remained α-chitin chains in pure chitosan, respectively. The characteristic peaks of chitosan in the XRD pattern of the magnetic bio-adsorbent disappeared, indicating of the amorphous structure of chitosan. It suggests that the addition of magnetite nanoparticles obviously affects the crystallinity of chitosan. On analyzing the values of r2 and RMSE obtained using Freundlich and Langmuir models, it was observed that Freundlich model provided the best fit for the experimental adsorption and desorption data at the ranged of the Cd2+ concentration studied in the soil and water systems. To evaluate the efficiency of the modified chitosan as an efficient bio-adsorbent in water and soil system, the difference between adsorption and desorption amounts, Δq, was calculated. The less amounts of Δq, the more efficient adsorbent in a water system. This means that the adsorbent can be reused several times. In contrast, in a soil system, a positive relationship was found between the amounts of Δq and the efficiency of the adsorbent. This means that the adsorbent can immobilize the adsorbatesand therefore, may be used as a metal immobilizing amendment in soil. As the initial concentrations raised, the amounts of Δq increased in the water system; therefore, it seems that the bio-adsorbent may not efficient at high initial concentrations. In the soil system, the more amounts of Δq decreases, the more efficiency of the adsorbent as a cadmium immobilization increases. Therefore, the bio-adsorbent used can be relatively efficient as a soil modifier.
Conclusions: The results revealed the magnetic bio-adsorbent based on chitosan can be sorb Cd2+ from water and soil systems. The maximum adsorption capacity (b) of cadmium onto the adsorbent appeared to increase from the water system to the soil system, from 750.2 to 992.7 µmol/g, respectively. On analyzing the values of r2 and RMSE obtained using Freundlich and Langmuir models, it found that Freundlich model provided the best fit for the experimental adsorption and desorption data at the ranged of the Cd2+ concentration studied in both water and soil systems. By comparing the amounts of Δq, the difference between adsorption and desorption amounts, the bio-adsorbent is not economically feasible at high initial concentrations in the water system. But, the more decrease amounts of Δq in the soil system, the more increase efficiency of the adsorbent as a cadmium immobilization. So that, the bio-adsorbent used can be relatively economic as a soil modifier.
 

کلیدواژه‌ها [English]

  • Keywords: Freundlich
  • κ-Carrageenan
  • Cadmium
  • Chitosan
  • Langmuir
1. Alvarez M.T., Crespo C., and Mattiasson B. 2007. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66: 1677-1683.
2. Dabrowski A., Hubicki Z., Podkoscielny P., and Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56:91-106.
3. Essington, M. E. 2004. “Soil and water chemistry, an integrative approach. CRC Press LLC”.
4. Escobar C., Soto-Salazar C., and Toral I. 2006. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. Journal of Environmental Management, 81(4):384-391.
5. Gee G.W., and Or D. 2002. Particle-size analysis. In: J.H. Dane and G. C. Topp (eds.). Methods of Soil Analysis: Physical Methods, Part 4. Soil Science Society of America, Inc. Madison, WI, USA, 255-295.
6. Grenha A., Gomes M.E., Rodrigues M., Santo V.E., Mano J.F., Neves N.M., and Reis, R.L. 2010. Development of new chitosan/carrageenan nanoparticles for drug delivery applications, Journal of Biomedical Materials, Part A 92:1265-1272.
7. Igberase E. and Osifo P. 2015. Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution, Journal of Industrial and Engineering Chemistry, 26: 340-347.
8. Igberase E., Osifo P., and Ofomaja, A. 2014. The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1): 362-369.
9. Jenkins D. W., and Hudson S. M. 2001. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chemical Reviews, 101(11): 3245-3274.
10. Karimi, M.H., Mahdavinia, G. R., Massoumi, B., Baghban, A., and Saraei, M. 2018. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. International journal of biological macromolecules, 113: 361-375.
11. Kamari A., Pulford I. D., and Hargreaves J. S. J. 2011. Binding of heavy metal contaminants onto chitosans-an evaluation for remediation of metal contaminated soil and water. Journal of environmental management, 92(10): 2675-2682.
12. Kheriji J., Tabassi D., and Hamrouni B. 2015. Removal of Cd (II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Science and Technology, 72(7):1206-1216.
13. Kim H. R., Jang J. W., and Park J. W. 2016. Carboxymethyl chitosan‐modified magnetic‐cored dendrimer as an amphoteric adsorbent. Journal of Hazardous Materials, 317: 608‐616.
14. Landaburu-Aguirre J., Garcıa V., Pongracz E., and Keiski R.L. 2009. The removal of zinc from synthetic wastewaters by micellar- nhanced ultrafiltration: Statistical design of experiments. Desalination, 240:262-269.
15. Laus R., Costa T. G., Szpoganicz B., and Favere V. T. 2010. Adsorption and desorption of Cu (II), Cd (II) and Pb (II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials, 183(1-3): 233-241.
16. Liu X., Hu Q., Fang Z., Zhang X., and Zhang B. 2008. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal, Langmuir, 25: 3-8.
17. Lv P., Bin Y., Li Y., Chen R., Wang X., and Zhao B. 2009. Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer, 50(24): 5675-5680.
18. Medina B.Y., Torem M.L., and de Mesquita L.M.S. 2005. On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Minerals Engineering, 18:225-231.
19. Mola Ali Abasiyan S., and Mahdavinia G. R. 2018. Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environmental Science and Pollution Research International, 25(15):14977-14988.
20. Morrow H., 2001. Environmental and human health impact assessments of battery systems. In Industrial chemistry library. Elsevier, 10: 1-34.
21. Muzzarelli R. A., 1973. Natural chelating polymers; alginic acid, chitin and chitosan. InNatural chelating polymers; alginic acid, chitin and chitosan. Pergamon Press.
22. Naidu R., and Harter R.D. 1998. Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Science Society America Journal, 62: 644-650.
23. Nelson D. W., and Sommers L. E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis part 3-chemical methods, (Methods of Soil Analysis), 961-1010.
24. Osifo P. O., Neomagus H. W., Everson R. C., Webster A., and vd Gun M. A. 2009. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration. Journal of Hazardous Materials, 167(1-3): 1242-1245.
25. Qin, F., Shan, X., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57: 253–263.
26. Reddy D. H., and Lee S. M. 2013. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid & Interface Science, 202(4): 68‐93.
27. Sparks D. L., Helmke P. A., and Page A. L. 1996. Methods of soil analysis: Chemical methods (No. 631.417/S736 V. 3). SSSA.
28. Sposito G. 1980. Derivation of the Freundlich Equation for Ion Exchange Reactions in Soils1. Soil Science Society of America Journal, 44(3): 652-654.
29. Yuwei C., and Jianlong W. 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. Chemical Engineering Journal, 168(1): 286-292.
CAPTCHA Image