ارزیابی کارآیی روش‌های الاستیسیته محور در برآورد سهم تغییرات اقلیمی و فعالیت‌های انسانی در میزان دبی رودخانه‌ها (مطالعه موردی: رودخانه قره‌سو)

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

تغییرات اقلیمی و فعالیت­های انسانی از جمله عوامل مهمی هستند که بر جریان رودخانه تاثیر می­گذارند. هدف این مطالعه، تعیین سهم هر کدام از عوامل تغییرات اقلیمی و فعالیت­های انسانی بر تغییرات دبی رودخانه قره­سو یکی از مهم­ترین رودخانه­های استان اردبیل در دو ایستگاه سامیان و دوست بیگلو با استفاده از روش­های الاستیسیته محور (بودیکو محور و روش ناپارامتری) می­باشد. در این تحقیق، ابتدا به‌منظور تعیین نقطه تغییر مقدار رواناب رودخانه و تقسیم­بندی دوره پایه و تغییر از آزمون پتیت در طول دوره آماری 1361- 1398 استفاده شد. این آزمون در نرم‌افزار Xlstat انجام شد. با توجه به نتایج این آزمون در سال 1376 یک تغییر در سری زمانی جریان سالانه رخ داد که از سال 1361 تا 1376 به‌عنوان دوره پایه و از سال 1377 تا 1398 به‌عنوان دوره تغییرات در نظر گرفته شد. سپس با استفاده از روش­های الاستیسیته محور سهم هر کدام از این عوامل تعیین گردید. نتایج نشان داد که در ایستگاه هیدرومتری سامیان سهم تغییرات اقلیمی برابر 74/11-63/7 درصد و سهم فعالیت­های انسانی برابر 37/92-26/88 درصد می­باشد. در ایستگاه هیدرومتری دوست­بیگلو نیز سهم تغییرات اقلیمی برابر 87/3-29/2 درصد و سهم فعالیت­های انسانی برابر 71/97-13/96 درصد می­باشد. با توجه به نتایج حاصل در هر دو ایستگاه، تأثیر فعالیت­های انسانی (بیشتر از 88 درصد) بر روی رواناب حوضه به مراتب بیشتر از تغییرات اقلیمی (کمتر از 11 درصد) می­باشد. بنابراین، جلوگیری از انجام فعالیت­های انسانی مؤثر در کاهش دبی رودخانه، در حل و مدیریت مشکلات آبی حوضه ضروری بنظر می­رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Elasticity-Based Methods in Estimating Contribution of Climate Change and Human Activities on Rivers’ Discharge (Case Study: Gharehsoo River)

نویسندگان [English]

  • Hajar Norozzadeh
  • Mahsa Hasanpour Kashani
  • Ali Rasoulzadeh
Department of Water Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Climatic changes and human activities are among the important factors that affect the flow of rivers and it is very important to determine the contribution of these factors in order to better manage water resources. In recent years, there have been major changes in the watersheds, and the amount of runoff and river flow has decreased, or in some cases, the flow has increased due to the occurrence of floods. The issue of reducing the amount of runoff, especially in the arid and semi-arid regions of Iran, is one of the basic challenges related to the management of water resources. Hydrological changes primarily result from a combination of natural or climatic factors, including precipitation levels, air temperature, and overall warming of the Earth. Additionally, human activities, such as the construction of dams, creation of reservoirs, urbanization expansion, and indiscriminate harvesting, play a significant role. It is important to note that these factors are interconnected, and alterations in one can impact the others. The increase of greenhouse gases and climate change has caused a change in the hydrological cycle and the amount of runoff in the watersheds and has increased the number of climatic extreme events. The main purpose of this study is to determine the contribution of each of these factors on the discharge changes of the Gharehsoo River, one of the most important rivers of Ardabil province, using elasticity-based methods (non-parametric and Bodiko-based methods).
 
Materials and Methods
In this research, firstly, in order to determine the point of change in the amount of river runoff and to divide the base and change period, Petit's test was used during the statistical period of 1984-2019. This test was done using Xlstat software. According to the results of this test, there was a change in the annual flow time series in 1997, which was considered as the base period from 1984 to 1997 and from 1998 to 2019 as the period of changes. Then, the contribution of each of these factors was determined using elasticity-based methods.
 
Results and Discussion
In the elasticity-oriented method, the non-parametric method and the methods based on Bodiko's assumptions were used to calculate the elasticity coefficient.The results showed that in Samyan station, in the non-parametric method, the contribution of human activities is 88.26% and the contribution of climate change is 11.74%. The contribution of human activities and the contribution of climate change for the methods of Schreiber, Aldekap, Bodiko, Peek and Zhang, respectively 91.98 and 8.02, 90.02 and 9.97, 91.98 and 8.02, 90.80 and 9.20, 92.37 and 7.62 are estimated. In general, in the elasticity method, the contribution of human activities is 88.26 to 92.37 percent and the contribution of climate change is from 7.63 to 11.74 percent, depending on the non-parametric and Bodiko method. At the Dost-Beiglo station, employing the non-parametric method reveals that human activities account for 96.13% of the observed changes, while the remaining 3.87% is attributed to climate change. The contribution of human activities and the contribution of climate change for the methods of Schreiber, Eldekap, Bodiko, Pick and Zhang are 97.71 and 2.29, 97.42 and 2.58, 97.56 and 2.44, 97.48 and 2.52, 97.71 and 2.29 are estimated. In general, in the elasticity-oriented method, the contribution of human activities between 96.13 and 97.71 percent and the contribution of climate change from 2.29 to 3.87 percent, depending on the non-parametric and Boudico-oriented method, have been met.
 
Conclusion
In this research, different hydrometeorological data such as precipitation, evaporation and transpiration and monthly discharge from the Samyan and Dost Beiglo stations were used for the statistical period of 1982-2019. First, by using Pettitt's test, it was determined that the river flow rate has changed abruptly since 2016. Therefore, the entire statistical period was divided into two natural and change periods, and then, using elasticity-based methods, the contribution of human activities and the contribution of climate change were determined. According to the results obtained in both stations, the impact of human activities (more than 88%) on the basin's runoff is far more than climate change (less than 11%). Therefore, it seems necessary to prevent the effective human activities on reducing the river flow in solving and managing water problems in the basin.

کلیدواژه‌ها [English]

  • Climatic changes
  • Human activities
  • Pettitt'
  • s test
  • elasticity-based method
  • Runoff flow

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1- Abbasi, H., & Malekani, L. (2021). Runoff Modeling and Estimation of Runoff Changes Due to Climatic and Human Factors. Iranian Journal of Irrigation and Drainage, 13(2), 475-485. (In Persian with English abstract). dor:20.1001.1.20087942.1398.13.2.18.6
2- Budyko, M.I. (1948). Evaporation under Natural Conditions. Translated from Russian by Israel Program.
3- Gao, G., Fu, B., Wang, S., Liang, W., & Jiang, X. (2016). Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557-558, 331-342. https://doi.org/10.1016/j.scitotenv.2016.03.019
4- Fu, G., Charles, S.P., & Chiew, F.H.S. (2007). A two-parameter climate elasticity of runoff index to assess climate change effects on annual runoff. Water Resources Research, 43(11), 11-19. https://doi.org/10.1029/2007WR005890
5-Hood, M. (2011). Increased flooding driven by climate change. African Network of Environmental Journalists (ANEJ).
6-Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319(1-4), 83-95. https://doi.org/10.1016/j.jhydrol.2005.07.003
7-Kakaei, E., Moradi, H.R., Moghaddam Nia,  A.R., & Van Lanen, H.A.J. (2019). Quantifying positive and negative human-modified droughts in the Anthropocene:Illustration with twoIranian catchments. Water, 11(5), 884. https://doi.org/10.3390/w11050884
8-Kanani, R., Fakheri, A., Ghorbani, A., & Dinpashoh,Y. (2021). Trend analysis of the stremflow in the Lighvan river hydrometric station (Upstream and Downstream). Journal of Watershed Management Research, 11(22), 11-19. (In Persian). https://doi.org/10.52547/jwmr.11.22.11
9- Kakehmami, A., Ghorbani, A., Moameri, M., & Ghafari, S. (2021). Evaluation of land use changes in Ardabil province using satellite image processing. Iranian Journal of Range and Desert Research, 28(3), 537-550. (In Persian). https://doi.org/10.22092/ijrdr.2021.125011
10- Ma, Z., Kang, S., Zhang, L., Tong, L., & Su, X. (2008). Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. Journal of Hydrology, 352(3-4), 239-249. https://doi.org/10.1016/j.jhydrol.2007.12.022
11- Milly, P.C.D., Dunne, K.A., & Vecchia, A.V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347-350. https://doi.org/ 10.1038/nature04312  
12- Mwangi, H.M., Julich, S., Patil, S.D., McDonald, M.A., & Feger, K.H. (2016). Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. Journal of Hydrology: Regional Studies, 5, 244-260. https://doi.org/10.1016/j.ejrh.2015.12.059
13- Ol'dekop, E.M. (1911). On Evaporation from the Surface of River Basins: Transactions on Meteorological Observations. Lur-evskogo, report, University of Tartu, Estonia. (In Russian)
14- Pettitt, A.N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society, 28(2), 126-135. https://doi.org/10.2307/2346729
15- Pike, J.G. (1964). The estimation of annual runoff from meteorological data in a tropical climate. Journal of Hydrology, 2(2), 116-123. https://doi.org/10.1016/0022-1694(64)90022-8
16- Rangecroft, S., Van Loon, A.F., Maureira, H., Verbits, K., & Hannah, D.M. (2016). Multi-method assessment of reservoir effects on hydrological droughts in an arid region. Earth System Dynamics, 57, 1-32. https://doi.org/10.5194/esd-2016-57
17- Schreiber, P. (1904). Uber die Beziehungen zwischen dem Niederschlag und der Wasserfu hrung der Flu ße in Mitteleuropa. Meteorologische Zeitschrift, 21(10), 441-452.
18- Schaake, J.C. (1990). From climate to flow. P. 177–206. In: Waggoner, P.E., Wiley, J. (eds), Climate Change and U.S. Water Resources, New York.
19- Sorokin, L.V., & Mondello, G. (2017). Entering the new +2 °C Global Warming age and a threat of World Ocean expansion for sustainable economic development. In: Mal, S. et al. (eds.), Climate Change Extreme Events and Disaster Risk Reduction, Springer, Berlin, Germany.
20- Wu, J., Miao, C., Zhang, X., Yang, T., & Duan, Q. (2017). Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment, 586, 328-337. https://doi.org/10.1016/j.scitotenv.2017.02.010
21- Yao, H., Shi, C., Shao, W., Bai, J., & Yang, H. (2015). Impacts of climate change and human activities on runoff and sediment load of the Xiliugao Basin in the upper Yellow river. Advances in Meteorology, 481713. https://doi.org/10.1155/2015/481713
22- Zahraie, B., Kolbasi, A., & Salehabadi, H. (2017). Estimating the contribution of the effects of climate change and human activities in the reduction of runoff entering the Zaindarud dam. In International Climate Change Conference, Ministry of Power, Tehran. (In Persian)
23- Zhao, G., Tian, P., Mu, X., Jiao, J., Wang, F., & Gao, P. (2014). Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. Journal of Hydrology, 519, 387–398. https://doi.org/10.1016/j.jhydrol.2014.07.014
24- Zhang, L., Dawes, W.R., & Walker, G.R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 701-708. https://doi.org/10.1029/2000WR900325
 
 
CAPTCHA Image