بررسی تأثیر تلقیح میکروبی بر فسفرکارایی ارقام مختلف جو در استفاده از سنگ فسفات

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 ؟

3 استادیار سازمان تحقیقات

چکیده

به منظور بررسی تأثیر تلقیح میکروبی بر فسفر کارایی ارقام مختلف جو،آزمایشی گلخانه ای بصورت فاکتوریل در قالب بلوکهای کامل تصادفی با 10 رقم جو و تیمارهای مختلف فسفر نامحلول به همراه تلقیح میکروبی شامل تیمار شاهد (P0)، مصرف سنگ فسفات (RP)، تلقیح قارچ های حل کننده فسفات (RP+F)، تلقیح باکتری های حل کننده فسفات (RP+B)، تلقیح مخلوط قارچ و باکتری (RP+B+F) و مصرف فسفر محلول (PS) در سه تکرار انجام گرفت. بعد از برداشت، وزن خشک دانه و میزان فسفر آن اندازه گیری گردید و سپس شاخص های فسفرکارایی (PE)، کارایی جذب (PACE) و کارایی مصرف فسفر (PUTE) محاسبه گردیدند. نتایج نشان داد تیمارهای میکروبی اثر معنی داری (P < 0.01) بر عملکرد دانه، مقدار و غلظت فسفر دانه و شاخص های فسفرکارایی داشتند بطوریکه در تیمار شاهد فسفرکارایی ارقام بطور میانگین 49/0 بدست آمد که با تلقیح قارچ های حل کننده فسفات به 74/0، با تلقیح باکتری ها به 65/0 و با تلقیح توأم قارچ و باکتری به 69/0 افزایش یافت. در بین ارقام نیز اختلاف معنی داری (P < 0.01) در پارامترهای عملکرد و شاخص های کارایی مشاهده شد بطوریکه در شرایط کمبود فسفر رقم Obrukبا 1/5 گرم بیشترین و رقم Denmark با 5/2 گرم کمترین دانه را تولید کردند و رقم Rihane-03 کاراترین رقم در جذب فسفر (PACE) و رقم Yea-168 کاراترین رقم در مصرف فسفر (PUTE) بدست آمد. بنابراین می توان گفت با انتخاب ارقام فسفرکارا و استفاده از ریزجانداران حل کننده فسفات می توان جذب فسفر را از منابع سنگ فسفات و شکلهای نامحلول آن در خاک افزایش و مصرف کودهای شیمیایی را کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Microbial Inoculation on Phosphorus Efficiency (PE) of Different Genotypes of Barley

نویسندگان [English]

  • R. Mosavi 1
  • E. Sepehr 1
  • A. Samadi 1
  • Mirhasan Rasouli-Sadaghiani 2
  • B. Sadeghzade 3
1 Urmia University
3 System of Researches, Education and Agriculture Extension of Dame Firm, Marraghe
چکیده [English]

Introduction: Phosphorus (P) is regarded as the most important soil nutrient after nitrogen (N) for plant growth and development as it plays key roles in plant metabolism, structure and energy transformation. Also, although soil P is often abundant in both organic and inorganic forms, it is frequently a major or even the prime limiting factor for plant growth. Low phosphorus (P) availability is a major global global constraint to crop production. In most soils, soil and fertilizer P are easily bound by either soil organic matter or chemicals, and thus are unavailable to plants unless hydrolyzed to release inorganic phosphate. Phosphorus efficient plants play a major role in increasing crop yields due to shortage of inorganic P fertilizer resources, limited land and water resources, and increasing environmental concerns. Therefore, the development of P-efficient crop varieties that can grow and yield better with low P supply is a key for improving crop production. Enhancing P efficiency in plants can be achieved through enhancing P acquisition, utilization, or both.
Materials and Methods: In order to investigate the effect of microbial inoculation on phosphorus efficiency of different genotypes of barley, a glasshouse factorial experiment was conducted in a completely randomized block design with 10 barley genotypes and different phosphorus (P) treatments including control (P0), phosphate rock (RP), RP inoculated with phosphate solubilizing fungi (RP+F), RP inoculated with phosphate solubilizing bacteria (RP+B), RP inoculated with both fungi and bacteria inoculums (RP+B+F), and soluble phosphate (PS) in three replications. After sieving (2 mm sieve), and, air - drying of soil samples, basal nutrients mixed thoroughly at the following soil test results. Then, soils placed in plastic pots (3 kg). The P treatments as (KH2PO4 and Rock Phosphate) 80 mg kg-1 soil added at the depth of 5-cm of soil. After 9 weeks the plants were harvested, grain dry weight (GDW) and grain P concentration measured and then content P (TP), P efficiency (PE), P acquisition efficiency (PACE) and P utilization efficiency (PUTE) were calculated.
Results and Discussion: The results indicated that microbial inoculation had significant effect (P

کلیدواژه‌ها [English]

  • barley
  • Phosphorus Efficiency
  • Phosphate rock
  • Phosphate-Solubilizing Microorganisms
1- Batten G.D. 1992. A review of phosphorus efficiency in wheat, Plant Soil, 146: 163-168.
2- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soil, Agronomy Journal, 54: 464-465.
3- Ekin Z. 2011. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer, African Journal of Biotechnology, 9(25): 3794-3800.
4- Eftekhari1 S.A., Ardakani1 M.R. Paknejad F. R., and Hasanabadi T. 2012. Phosphorus Absorption in Barley (Hordeum vulgare L.) under Different Phosphorus Application Rates and Co-Inoculation of Pseudomonas fluorescence and Azospirillum lipoferum, Annals of Biological Research, 3 (6):2694-2702.
5- Fita A., and Nuez F. 2011. Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica, 181(3): 323-339.
6- Gahoonia T.S., and Nielsen N.E. 1996.Variation in acquisition of soil P among wheat and barley genotypes, Plant Soil,178: 223-230.
7- Gahoonia T S., Nielsen N. E., and Lyshede O. B. 1999. Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil. 211: 269–281.
8- Hussein A.H.A. 2009. Phosphorus use efficiency by two varieties of corn at different phosphorus fertilizer application rates, Research Journal of Application Sciences, 4 (2): 85-93.
9- Iranshahr E., and Sepehr E. 2012. Evaluation of phosphorus acquisition and utilization efficiency of wheat genotypes in rock phosphate, Journal of Water and Soil, 26(4):968-978. (in Persian with English abstract)
10- Jones D.L., and Darrah P. R. 1996. Critical-evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake, Plant Soil, 180: 57-66.
11- Jutur P. P., and Reddy A.R. 2007. Isolation, purification and properties of new restriction endonucleases from Bacillus badius and Bacillus lentus, Research in Microbiology, 162: 378-383.
12- Kang S. C., Hat C. G., Lee T. G., and Maheshwari D. K. 2002. Solubiliztion of insolubleinorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Current Science. 82:439-442.
13- Khorassani R. 2010. Phosphorus uptake efficiency in corn, sugar beet and groundnut, Journal of Water and Soil, 24(1): 180-188. (in Persian with English abstract)
14- Kim K. Y., McDonald G. A., and Jordan D. 1998. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils. 26: 79-87.
15- Krasilnikoff G., Gahoonia T., and Nielsen N.E. 2003. Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil. 251: 83-91.
16- Kucey R. M. N. 1983. Phosphate solubilizing bacteria and fungi in various cultivatedand virgin alberta soils. Canadian journal of Soil Science. 63: 671-678.
17- Lin ZH. L.S., Chen RB., Chen F.Z., Zhang H.X., Jiang N., Tang B.R., and Smith. 2011. Root release and metabolism of organic acids in tea plants in reponse to phosphorus supply. Journal of Plant Physiology. 168:644-652.
18- Manske G.G.B., Ortiz-Monasterio J.I., Van Ginkel M., Gonzalez R.M., Rajaram S., Molina E., and Vlek P.L.G. 2001. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal Agriculture. 14: 261-274.
19- Marschner P., Solaiman Z., and Rengel Z. 2006. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology & Biochemistry. 39: 87-98.
20- Osborne L. D., and Rengel Z. 2002. Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilization. Australian Journal of Agricultural Research. 53: 295–303.
21- Ozturk L. S., Eker B., Torun., and Cakmak I. 2005. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil. 269: 69–80.
22- Rudresh D.L., Shivaprakash M.K., and Prasad R.D. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichodermaspp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.).Applied Soil Ecology. 28: 139-146.
23- Sattar M.A., and Gaur A.C. 1987. Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl Mikrobiol. 142:393-395.
24- Shahbaz A.M., Oki Y., and Adachi T. 2005. Phosphorus nutrition of Brassica cultivars under deficient and adequate levels in solution culture. Pp: 236-237. In: Li, (ed.), Plant Nutrition for Food Security, Human Health and Environmental Protection, TsinghuaUniversity Press. Beijing, China.
25- Shiranirad. A.H., Hashemi dezfoli. A and Alizade. A.A. 2000. The study of Vesicular-Arbuscular- Mycorrizae Fungi, Phosphorus and drought stress effects on nutrient uptake efficiency in wheat. Seed and Plant Improvement Journal. 16(3): 327-349.
26- Siddiqui Z. A., and Pichtel J. 2008. Mycorrhizae: an overview. P. 1–35. In: Z.A. Siddiqui et al., (Eds) Mycorrhizae: Sustainable agriculture and forestry. Springer Science+ Business Media B.V.
27- Sepehr E., Malakouti M.J., Kholdebarin B., Samadi A., and Karimian N. 2009. Genotypics variation in P efficiency of selected Iranian cereals in greenhouse experiment. International Journal of Agronomy & Plant Production. 3: 17-28.
28- Vance C.P., Uhde-Stone C., and Allan D.L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.New Phytologist 157: 423–447.
29- Westerman R.L. 1990. Soil Testing and Plant Analysis. 3rd edition. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.
30- Yan X. 2005. The roots of phosphorus- efficient soybean: theories and practices. In: Li, C. Y. (Ed.), Plant nutrition for food security, human health and environmental protection, Tsinghua University Press. Beijing, China. 36-37.
CAPTCHA Image