پیامد مایه‌زنی میکروبی بر رشد،جذب آهن و روی و پاسخ بیوشیمیایی بنگ‌دانه (Hyoscyamus niger L.) در تنش سرب

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

در این پژوهش پیامد مایه‌زنی قارچ ریشه‌های آربوسکولار (AMF) و باکتری‌های افزاینده رشد گیاه (PGPR) بر رشد، برخی ویژگی‌های بیوشیمیایی و جذب آهن و روی توسط گیاه بنگ‌دانه (Hyoscyamus niger L.) در آلودگی سربی خاک بررسی گردید. برای این کار یک نمونه خاک گزینش و به-گونه یکنواختی با غلظت‌های گوناگون سرب (صفر، 250، 500 و 1000 میلی‌گرم بر کیلوگرم خاک) از نمک نیترات سرب آلوده شد. سپس خاک آلوده شده سترون و با گونه‌هایAMF (مخلوطی از زادمایه قارچ جنس گلوموس شامل گونه‌های G. intraradices، G. mosseae و G. fasciculatum) و PGPR (مخلوطی از باکتری‌های جنس سودوموناس شامل گونه‌های P. putida،P. fluorescens و P. aeruginosa) مایه‌زنی گردید. این پژوهش در گلخانه به‌گونه آزمایش فاکتوریل با دو فاکتور غلظت سرب (در 4 سطح) و تیمار میکروبی (در 3 سطح) در قالب طرح پایه بلوک‌های کامل تصادفی و در سه تکرار انجام شد. نتایج نشان داد با افزایش غلظت سرب در خاک درازی شاخساره، وزن خشک ریشه و شاخساره، رنگ‌دانه‌های فتوسنتزی، غلظت آهن و روی در شاخساره کاهش یافت و غلظت سرب در شاخساره، پرولین و قندهای محلول در گیاه افزایش یافت. مایه‌زنی AMF و PGPR سبب افزایش معنی‌دار (05/0P≤) وزن خشک شاخساره، وزن خشک ریشه، رنگ‌دانه‌های کلروفیل و کاروتنوئید، پرولین، قندهای محلول و غلظت آهن و روی در شاخساره شد. ویژگی‌های بیوشیمیایی در تیمارهای AMF و PGPR اختلاف معنی‌داری (05/0P≤) نداشتند. بنابراین می‌توان نتیجه‌گیری کرد که مایه‌زنی میکروبی مایه بهبود ویژگی‌های بیوشیمیایی گیاه و افزایش بردباری بنگ‌دانه در برابر آلودگی سرب می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Microbial Inoculation on Growth, Fe and Zn Uptake and Biochemical Response of Hyoscyamus niger L. in Lead (Pb) Stress

نویسندگان [English]

  • Akbar Karimi
  • Habib Khodaverdiloo
  • MirHasan Rasouli Sadaghiani
Urmia University
چکیده [English]

Introduction: Recently, due to enhancement of industrialization, urbanization and disposal of wastes, fertilizers and pesticides the concentration of heavy metals (HMs)in agricultural soil has increased. Heavy metals are serious threat for environment due to their hazardous effects. Lead (Pb) is one of the toxic heavy metal that threats the health of plants, living organisms and human. Excessive Pb concentrations in agricultural soils result in decreasing the soil fertility and health which affects the plant growth and leads to decrease in plant growth. Plants simultaneously exposed to Pb suffer morphological, biochemical and physiological injury. Pb adversely affect plant absorption of essential elements, chlorophyll biosynthesis and shoot and root growth. Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are known to enhance nutrient uptake and improvement of plant growth and tolerance in heavy metal contaminated soils through different mechanisms including producing low molecular weight organic acids, siderophore, antibiotics and hormones. The objective of this study was to evaluate the effect of AMF and PGPR on yield, leaf relative water content (RWC), some biochemical properties and uptake of Pb, Fe and Zn by Hyoscyamus (Hyoscyamus niger L.) under soil Pb contamination.
Materials and Methods: This study was carried out in greenhouse condition as a factorial experiment based on a randomized complete block design with two factors including Pb concentration (in four levels) and microbial treatment (in three levels including arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria and control) and in three replications. Consequently, a soil was selected and spiked uniformly with concentrations of Pb (0, 250, 500 and 1000 mg Pb kg-1 soil). The contaminated soil was then sterilized and inoculated with the selected species of arbuscular mycorrhizal fungi (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum) or plant growth-promoting rhizobacteria (a mixture of Pseudomonas species includeing P. putida, P. fluorescens, and P. aeruginosa). Seeds of Hyoscyamus niger L. plant were grown in pots containing the Pb spiked soil. At the end of growth period shoot length, dry weights of root and shoot, Fe, Zn and Pb concentration in shoot, and some biochemical and physiological properties of plant including relative water content (RWC) chlorophyll a, b and total chlorophyll, carotenoids, proline and soluble sugars, were measured.
Results and Discussion: Results indicated that with increasing soil Pb concentration, dry weights of root and shoot, shoot length, photosynthetic pigments contents (chlorophyll a, chlorophyll b, total chlorophyll and carotenoids), shoot Fe and Zn concentration decreased, while proline and soluble sugars contents and the shoot Pb concentration increased. With increasing of soil Pb concentration, relative water content decreased, however, this reduction in concentration of 1000 mg Pb kg-1 soil was not significant (P > 0.05) in compared with concentration of 1000 mg Pb kg-1 soil. Amounts of all measured properties in AMF and PGPR treatments were higher than that control treatment. The highest values of shoot weight and root weight, were observed in plants that inoculated with AMF. The lowest shoot weight was recorded in non-inoculated plants that were grown under 1000 mg Pb kg-1 soil concentration. In this study Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria inoculation led to a significant increase (P≤0.05) in shoot length (12.9 -71.1%), shoot dry weight (11.5 – 81%), root dry weight (18.4 – 60.6%), chlorophyll (8.5 – 36.5%) and carotenoid (11.5 – 40.0%) pigments, proline (55 – 115.7%), soluble sugars (17.6 – 72.2%) and shoot Fe (9.5 – 57.2%) and Zn (25.0 – 165.5%) concentration in shoot at different levels of soil Pb. The highest and lowest amounts of shoot Fe, Zn and Pb concentration observed in AMF and control treatments respectively. Plant growth promoting rhizobacteria were more effective than arbuscular mycorrhizal fungi in shoot Fe, Zn and Pb concentration, while the mean of shoot length and shoot and root dry weight was higher in plants that inoculated with AMF compared to ones inoculated with PGPR. In general, there were not significant (P ≤ 0.05) differences in amounts of chlorophyll (chlorophyll a, b and chlorophyll a+b) and carotenoids pigments, proline and soluble sugars between AMF and PGPR treatments.
Conclusion: It could be concluded that microbial inoculation (mixture of AMF and PGPR species) with improvement of plant biochemical properties results in improved Hyoscyamus niger L. yield and increased tolerance to Pb toxicity. Thus, the use of microbial inoculation (mixture of AMF and PGPR species) inoculation might be suggested for enhancement of plant tolerance in Pb contaminated soils.

کلیدواژه‌ها [English]

  • Arbuscular mycorrhizal fungi
  • Biochemical properties
  • Pb toxicity
  • Plant growth promoting rhizobacteria
1- Abdullah M., Fasola M., Muhammad A., Malik S.A., Bostan N., Bokhari H., Kamran M.A., Shafqat, M.N., Alamdar A., Khan M., and Ali N. 2015. A vianfeathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere, 119: 553–561.
2- Aldoobie N.F., and Beltagi M.S. 2013. Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology, 12(29): 4614-4622.
3- Bahraminia M., Zarei M., Ronaghi A., and Ghasemi-Fasaei R. 2015. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by Vetiver grass. International Journal of Phytoremediation, 18: 730-737.
4- Barbosa B., Boleo S, Sidella S., Costa J., Duarte M.P., Mendes B., Cosentino S.L., and Fernando A.L. 2015. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. BioEnergy Research, 8: 1500-1511.
5- Bates L.S., Waldern R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
6- Behera R.K., and Mishra P.C. 2002. High Irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. Journal of Plant Physiology, 159: 967-97.
7- Cariny T. 1995. The reuse of contaminated land. John Wiley and Sons Ltd Publisher, 219 p.
8- Carter M.R., and Gregorich E.G. 2008. Soil sampling and methods of analysis (2nd ed). CRC Press. Boca Raton. FL. 1204 p.
9- Cenkci S., Cioerci I.H., Yildiz M., Oezay C., Bozdao A., and Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67: 467-473.
10- Curaqueo G., Schoebitz M., Borie F., Caravaca F., and Roldan A. 2014. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. Environmental Science and Pollution Research, 21(12): 7403–7412.
11- Demir S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28: 85-90.
12- Gattai G.S., Pereira S.V., Costa C.M.C., Lima C.E.P., and Maia L. C. 2011. Microbial activity, arbuscular mycorrhizal fungi and inoculation of Woody plants in lead contaminated soil. Brazilian Journal of Microbiology, 42: 859-867.
13- Giovannetti M., and Mosse B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500.
14- Ivanov Y., Savochkin Y., and Kuznetsov V.l.V. 2013. Development of scots pine seedlings and functioning of antioxidant systems under the chronic action of lead ions. Biological Bulletin, 40(1): 26–35.
15- Janmohammadi M., Bihamta M., and Ghasemzadeh F. 2013. Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercetari agronomice in Moldova, 46: 49–67.
16- Kamran M.A., Eqani S.A., Bibi S., Xu R.K., Amna Monis M.F., Katsoyiannis A., Bokhari H., and Chaudhary H.J. 2016. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicology and Environmental Safety, 126: 256–263.
17- Karamooz H., Safipour Afshar A., and Saeid Nematpour F. 2016. Tolerance and accumulation of heavy metals by Descurainia sophia L. Journal of Chemical Health Risks, 6(1): 69–78.
18- Karimi A., Khodaverdiloo H., Sepehri M., and Rasouli Sadaghiani M.H. 2011. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5: 1571- 1576.
19- Karimi A. Khodaverdiloo H., and Rasouli Sadaghiani M.H. 2013. Enhanced soil Pb extraction by Acroptilon (Acroptilon repens) through inoculation with some arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria.Journal of Water and Soil Conservation, 20(3): 193-210. (In Persian with English abstract).
20- Khodaverdiloo H., Rahmanian M., Rezapour S., Ghorbani Dashtaki Sh., Hadi H., and Han F.X. 2012. Effect of wetting-drying cycles on redistribution of lead in some semi-arid zone soils spiked with a lead salt. Pedosphere, 22: 304–313.
21- Khodaverdiloo H., Rasouli Sadaghiani M.H., and Karimi A. 2013. Influence of microbial inoculation of a Pb-contaminated soil on growth, some physiological properties, and uptake and translocation of Pb, Fe, and Zn by Centaurea (Centaurea cyanus). Journal of Soil Management and Sustainable Production, 3(2): 75-93. (In Persian with English abstract).
22- Khodaverdiloo H., and Hamzenejad Taghlidabad R. 2014. Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chemistry and Ecology, 30: 216-226.
23- Kochert. 1978. Carbohydrate determination by phenol-sulfuric acid method. In:J.A. Hellebust and J.S. Craige, Editors, Handbook of physiological andbiochemical methods, Cambridge University Press, London, Pp: 95-97.
24- Kumar A., Prasad M.N.V., and Sytar O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89: 1056- 1065.
25- Kumar A., and Prasad M.N.V. 2015. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica, 53 (1): 66-71.
26- Lichtenthaler H.K., and Wellburn A.R. 1985. Determination of total carotenoids and chlorophyll a and b of leaf in different solvents. Biochemical Society Transactions, 11: 591-592.
27- Ma Y., Prasad M.N.V., Rajkumar M., and Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248-258.
28- Mohammadzadeh A., Tavakoli M., Chaichi M.R., and Motesharezadeh B. 2014. Effects of nickel and PGPBs on growth indices and phytoremediation capability of sunflower (Helianthusannuus L.). Archives of Agronomy and Soil Science, 1765-1778.
29- Patra M., Bhowmik N., Bandopadhyay B., and Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3): 199-223.
30- Qian K., Wang L., and Yin N. 2012. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology, 22(4): 553–557.
31- Rasouli Sadaghiani M.H., Kavazi K., Rahimian H., Malakouti M.J., and Asadi H. 2006. An evaluation of the potentials of indigenous fluorescent pseudomonads of wheat rhizosphere for producing siderophore. Journal of Soil Water Sciences, 20: 133-143. (In Persian with English abstract).
32- Rasouli Sadaghiani M.H., Khodaverdiloo H., Barin, M., and Kazemalilou S. 2016. Influence of PGPR bacteria and arbuscular Mycorrhizal fungi on growth and some physiological parameters of Onopordon acanthium in a Cd-contaminated soil. Journal of Water and Soil, 30(2): 542-554. (In Persian with English abstract).
33- Sharma P., and Dubey R.S. 2005. Lead toxicity in plants. Plant Physiology, 17: 35-52.
34- Smith S.E., and Read D.J. 2010. Mycorrhizal symbiosis. Academic press, 800p.
35- Turner N.C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58: 339–366.
36- Yang Y., Han X., Liang Y., Ghosh A., Chen J., and Tang M. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. Plos One, 10(12): 1-24.
CAPTCHA Image