بررسی ضرایب ورودی گیاهی مدل WOFOST در شرایط کم آبیاری بخشی ریشه برای گیاه آفتابگردان

نوع مقاله : مقالات پژوهشی

نویسندگان

1 ساری

2 علوم کشاورزی و منابع طبیعی ساری

3 دانشگاه ساری

4 ساری_ کیلومتر 9 جاده دریا دانشگاه علوم کشاورزی و منابع طبیعی ساری

5 آزاد لاهیجان

چکیده

پژوهش هایی که تاکنون در پیوند با مدل WOFOST منتشر شده است، به روش های سنتی کم آبیاری معطوف بوده که یا به صورت درصد کم آبیاری در شرایط بهینه لحاظ می شده یا بر اساس بررسی شرایط رشد در روزهای معینی پس از آبیاری است. همچنین بررسی این پژوهش ها نشان می دهد با وجودی که گیاهان یکساله زیادی مبنای بررسی ها بوده اند، اما هیچ کدام شامل گیاه آفتابگردان نبوده است. لذا در این پژوهش توانایی آخرین نسخه مدل WOFOST در شبیه سازی واکنش آفتابگردان در شرایط کم آبیاری بخشی ریشه و خشکی ریشه در دو سطح 55 و 75 درصد در مقایسه با شرایط آبیاری کامل مورد بررسی قرار گرفت تا بتوان ضرایب گیاهی را برای هر تیمار محاسبه کرد. ضریب های به دست آمده مبنایی برای محاسبات میزان بهره وری مصرف آب در مزرعه پژوهشی دانشگاه کشاورزی و منابع طبیعی ساری می باشد. نتایج حاصل از واسنجی نشان داد که ضرایب گیاهی وابسته به شرایط آب و هوایی، طول و عرض جغرافیایی منطقه و خصوصیات فنولوژیکی و فیزیولوژیکی گیاه برای یک گیاه خاص در طول شبیه سازی ثابت مانده و ضرایب آبیاری وابسته به نوع تیمارهای آبیاری و رفتار آنها در طول دوره رشد توانایی تغییر دارند. همچنین نتایج نشان داد که با کاهش حجم آب داده شده به گیاه، ضریب بیشینه آهنگ جذب دی اکسیدکربن در برگ و ضریب خاموشی کاهش و برعکس ضریب کارایی مصرف نور افزایش یافت. همچنین ارزیابی تمامی پارامترهای مورد بررسی بین مقادیر شبیه سازی و مشاهده ای نشان می دهد که شاخص ریشه میانگین مربعات خطای نسبی (nRSME) عملکرد دانه و زیست توده کل در هر دو رقم مورد بررسی کمتر از 10 درصد، شاخص ضریب جرم باقی مانده‌ها (CRM) نزدیک به صفر، ضریب کارآیی مدل (EF) 89/0، ضریب همبستگی (R)96/0 بدست آمد و مدل به خوبی توانسته است با استفاده از ضرایب واسنجی شده، پاسخ گیاه آفتابگردان را در تیمارهای کم آبیاری شبیه سازی کند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Plant Input Coefficient of WOFOST in PRD Condition for Sunflower

نویسندگان [English]

  • ,fatmeh hashami 1
  • Ali Shahnazari 2
  • mahmood raeini 3
  • ali ghadami firouzabadi 4
  • Ebrahim Amiri 5
1 Sanru
2 Sanru
5 Azad
چکیده [English]

The research as reported in related to simulation by WOFOST, predominately focused on traditional methods of deficit irrigation such as terms of percentage in full irrigation conditions or as evaluation of growth and development in certain days after irrigation. Also it should be noted that not only these researches was based on a year plants, but also there isn’t any research of sunflower. So, in this research the ability of the last version of WOFOST in simulating of sunflower in DI and PRD in %75 and %55 levels is carried out in contrast to FI in two continued year so that crop coefficient of sunflower could be calculated and by this, the productivity of yield in Sari agricultural and natural resources research field could be achieved. The results of calibrations showed that crop coefficient which depends on weather, coordinates of region and physiologic and phonologic of plant is fixed among the simulation and irrigation coefficient are depend on irrigation treatment and their response in development of growth stages. Also the results showed that by decreasing the volume of water which given to plant, AMAXTB and KDIFTB decreased and adversely EFFTB is increase. Simulated seed yield and total biomass had normalized root mean square error (nRMSE) index less than 10%, coefficient of residual mass (CRM) index near zero, modeling efficiency (EF) about 0.98, correlation coefficient (R) about 0.96 and totally comparing the simulation and observation parameters showed that in the most statistical test done in the present study, the result in acceptable range which represented that WOFOST could be able to simulate the responses od sunflower in DI and PRD treatments by calibrated coefficient.

کلیدواژه‌ها [English]

  • Sunflower
  • WOFOST
  • PRD
  • Biomass
  • yield
1- Ahmadi M., Farhadi B. and Ghobadi M. 2014. Regional transferring of barley yield and Water Productivity in deficit irrigation. Water research in agriculture, 28: 201- 211. (in Persian)
2- Amini Far J., Bigloee M. H. Mohsen Abadi Gh. And Samizade H. 2011. Effect of deficit irrigation on yield and productivity in 7 type of soybean in Rasht region. Soil and water knowledge, 21: 81-92.
3- Amiri E. Kavosi M. and Kaveh F. 2009. Evaluation of plant growth model ORYZA2000, SWAP and WOFOST in different irrigation management. Agricultural and engineering research, 10: 13- 28. (in Persian)
4- Amiri E., Rezaii M., Mo’tamed M. K. and Emami S. 2011. Evaluation of crop growth of WOFOST model in irrigation management condition. Agronomy, 90: 9-17. (in Persian)
5- Bouman, B. A. M., Van Keulen, H., Van Laar, H. H. and Rabbinge, R. 1996. The “School of de Wit”, crop growth simulation models: pedigree and historical overview. Agric. Sys. 52: 171-198.
6- Boogaard H., Wolf J., Supitc I., Niemeyerd S., Ittersuma M. v. 2013. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 143: 130–142.
7- Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillere, J.P., Henault, C., Maraux, F., Seguin, B., Sinoquet, H., 2003. An overview of the crop model STICS. Eur. J. Agron. 18, 309–332.
8- Choisnel, E., de Villele, O., Lacroze, F., 1992. Une approche de uniformisee du calcul de l’evapotranspiration potentielle pour l’ensemble des pays de la Communaute Europeenne. Joint Research Centre, Commission of the European Communities, EUR 14223 FR, Luxembourg, 176 pp.
9- Confalonieri, R., Acutis, M., Bellocchi, G., Cerrani, I., Tarantola, S., Donatelli, M., Genovese, G., 2006b. Exploratory sensitivity analysis of CropSyst WARM and WOFOST: a case-study with rice biomass simulations. Ital. J. Agrometeorol. 11, 17–25.
10- Confalonieri, R., Acutis, M., Bellocchic, G. and Donatelli, M. 2013. Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecol. Model. 220: 1395-1410.
11- CWFS. 1985. Potential food production increases from fertilizer aid: a case study of Burkina Faso, Ghana and Kenya. CWFS, Wageningen.
12- Donald, C.M. and Hamblin, J. 1976. The biological yield and harvest index of cereal as Agronomic and plant breeding criteria. Adv. Agron.28:361-405.
13- Diekkrüger, B., Arning, M., 1995. Simulation of water fluxes using different methods for estimating soil parameters. Ecol. Model. 81, 83–97.
14- Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., Bindi, M., Palosuo, T., Rotter, R., Kersebaum, K.C., Olesen, J.E., Patil, R.H., Saylan, L., C, alda˘g, B., C, aylak, O., 2012. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agric. Sci., 1–23.
15- Geerts, S., D. Raes, M. Garcia, R. Miranda, J.A. Cusicanqui, C. Taboada, J. Mendoza, R. Huanca, A. Mamani, O. Condori, J. Mamani, B. Morales, V. Osco, and P. Steduto. 2009. Simulating Yield Response of Quinoa to Water Availability with AquaCrop. Agronomy Journal, 101(3): 499–508.
16- Ghadami A. 2015. Water Management and Soil Moisture Changes in Full, Regulated Deficit and Partial Root Zone Deficit Irrigations in Sunflower Plant. Sari Agricultural Sciences and Natural Resources University, Agriculture Engineering Faculty Water Engineering Department, Ph.D thesis in irrigation and drainage engineering.
17- Jarvis, P.G., 1981. Stomatal conductance, gaseous exchange and transpiration. In: Plants and Their Atmospheric Environment. Blackwell Scientific Publications, Oxford, pp. 175–214.
18- Kiani A. R. 2010. Optimal irrigation scheduling base on water yield relations in soybean cultivars. Agricultural engineering research, 11: 85-112. (In Persian)
19- Kloss S, Pushpalatha R, Kamoyo KJ, Schütze N (2012) Evaluation of crop models for simulating and optimizing deficit irrigation systems in arid and semi-arid countries under climate variability. Water Resour Manag 26: 997–1014.
20- Khoshravesh M., Ghadami Firouzabadi A., Shirazi P. and Najafi-Mood M. H. 2015. Cotton Response Simulation to Dry and Salinity Stress by using of AquaCrop Model. Water and irrigation engineering, 21: 166- 179. (in Persian)
21- Penman, H.L., 1956. Evaporation, an introductory survey. Neth. J. Agric. Sci. 4, 9–29.
22- Palosuo, T., Kersebaum, K.C., Angulo, C., et al., 2011. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–114.
23- Ritchie, J.T., 1998. Soil water balance and plant water stress. In: Tsuji, G.Y., Hoogenboom, G., Thorton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 41–55.
24- Rötter, R.P.; Palosuo, T.; Pirttioja, N.K.; Dubrovsky, M.; Salo, T.; Fronzek, S.; Aikasalo, R.; Trnka, M.; Ristolainen, A.; Carter, T.R. 2011.What would happen to barley production in Finland if global warming exceeded 4 _C? A model-based assessment. Eur. J. Agron., 35, 205–214.
25- Rotter, R., Palosuo, T., Kersebaum, K.C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P., Moriondo, M., Nendel, C., Olesen, J.E., Patil, R.H., Ruget, F., Takaˇc, J., Trnka, M., 2012. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crops Res. 133, 23–36.
26- Saadati A., Pirmoradian N., Amiri E. and Rezaii M. 2012. Evaluation of WOFOST model in rice under different regimes of irrigation management. Water research in agriculture, 26: 323- 337. (in Persian)
27- Sepaskhah A., Tavakoli A. and Mosavi S. F. 2005. Principle and application of deficit irrigation. National irrigation and drainage committee, 10021.
28- Singh A.K., Tripathy R., and Chopra U. K. 2008. Evaluation of CERES Wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agricultural Water Management, 95: 776-786.
29- Singh A. 2014. Irrigation planning and management through optimization modelling. Water Resour Manag 28: 1–14
30- Sharpley, A.N., Wiliams, J.R., 1990. EPIC The Erosion Productivity Impact Calculator. 1. Model Documentation. U.S. Department of Agriculture, Technical Buletin No. 1768.
31- Sharma A., Bharat R., Roak K. V., Vittal, P. R., Ramakrishna Y. S. and Amarasinghr U. 2010. Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements. Agric Water manage, 97: 23-30.
32- Shahin Rokhsar p and Amiri E. 2016. Evaluating WOFOST Model under Water Limited Conditions for Soybean Cultivars. Simulation of growth and development of plants, Sabz shomal.
33- Supit, I., Van Diepen, C.A., De Wit, A.J.W., Kabat, P., Baruth, B., Ludwig, F., 2010. Recent changes in the climatic yield potential of various crops in Europe. Agric. Syst. 103, 683–694.
34- Todorovic. M., R. Albrizio, L. Zivotic, M. Abi Saab, C. Stöckle and P. Steduto. 2009. Assessment of AquaCrop, CropSyst, and WOFOST Models in the Simulation of Sunflower Growth under Different Water Regimes. Agron. J. 101: 509–521.
35- Wang, E., Engel, T., 2002. Simulation of growth, water and nitrogen uptake of a wheat crop. Environ. Model. Software 17 (4), 387–402.
CAPTCHA Image