مدل‌سازی یکپارچه آب سطحی و زیرزمینی در مناطق متکی بر سیستم کشاورزی آبی با استفاده از مدل SWAT-MODFLOW (مطالعه موردی: حوضه آبریز نیشابور)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 فارغ‌التحصیل دکتری گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 فردوسی مشهد

چکیده

در سال­های اخیر، مناطق خشک و نیمه خشک با مشکل تخلیه­ی شدید منابع آب زیرزمینی به دلیل برداشت بی رویه از آن­ها رو به رو شده­اند. همچنین، آب سطحی و زیرزمینی در بسیاری از جوانب در ارتباط و تعامل مشترک بوده­اند. بنابراین، پیشرفت جامع و طولانی مدت راهکارهای مدیریت آب جهت پیاده­سازی روش­هایی برای حل مشکلات خصوصاً در حوضه­های بزرگ مقیاس، امری ضروری است. در تحقیق حاضر، چارچوب یک مدل تلفیقی آب سطحی و زیرزمینی جهت تسریع مدیریت منابع آب در حوضه خشک و نیمه خشک نیشابور و تحت آبیاری متمرکز از آب زیرزمینی، ارائه شده است. مدل اخیراً توسعه یافته تلفیقی SWAT-MODFLOW به صورت روزانه، آب زیرزمینی پمپ شده را از مدل MODFLOW جهت آبیاری مزارع تحت کشت به مدل SWAT منتقل کرده و با نفوذ عمقی از زیر پروفایل خاک، به عنوان تغذیه به مدل MODFLOW وارد می­کند. واسنجی مدل SWAT-MODFLOW برای 9 سال (2009-2001) و صحت­سنجی برای 2 سال (2011-2010) با استفاده از نتایج مدل در ایستگاه­های هیدرومتری آب سطحی و تراز آب زیرزمینی در چاه­های مشاهداتی آبخوان حوضه نیشابور به صورت روزانه انجام شد. نتایج نشان داد که در مرحله واسنجی رواناب ماهانه، ضرایب p-factor، r-factor، R2 و NS که به منظور ارزیابی توانایی مدل SWAT در شبیه­سازی رواناب به کار برده شد، در خروجی حوضه به ترتیب حدود 36/0، 21/0، 85/0 و 84/0 و در مرحله اعتبارسنجی به ترتیب 29/0، 83/0، 70/0 و 65/0 بوده است. بیشترین نرخ نفوذ در ماه­های اسفند و بهمن و کمترین نرخ نفوذ در ماه­های شهریور و مهر اتفاق افتاده است. همچنین از نظر توزیع مکانی، این مقدار تغذیه بیشتر در مخروط افکنه­ها و مناطق آبرفتی اتفاق می­افتد. با بررسی مقدار میانگین سطح ایستابی آب زیرزمینی مشاهده­ای و شبیه­سازی شده برای دوره­ی 2001 تا 2011 و برای 48 چاه مشاهداتی مشخص شد که میزان خطا برای 78% از نقاط، کمتر از 2 متر می­باشد و تنها 3 چاه خارج از بازه %15± خطا قرار دارد. همچنین سطح ایستابی در سال­های اخیر به شدت روند کاهشی نشان داده است که علت آن برداشت بی­رویه آب از چاه­ها در دوره مورد بررسی بوده است. به طور کلی نتایج این مطالعه نشان داد که مدل تلفیقی توسعه یافته SWAT-MODFLOW می­تواند در سایر حوضه­های خشک و نیمه خشک که آبیاری آن­ها عمدتاً از آبخوان انجام می­شود، استفاده گردد. علاوه بر این، این مدل می­تواند جهت مطالعات مدیریت پایدار منابع آب در دهه‌های آینده مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Integrated Surface and Groundwater Flow Modeling in Neishaboor Watershed with SWAT-MODFLOW

نویسندگان [English]

  • Alieh Saadatpour 1
  • Amin Alizadeh 2
  • Ali Naghi Ziaei 3
  • azizallah izady 4
1 Ferdowsi University of Mashhad
2 Ferdowsi University of Mashhad
3 Ferdowsi University of Mashhad
چکیده [English]

Introduction: During the last decades, arid and semi-arid regions has faced a severe problem of depletion of groundwater resources due to the over-exploitation of the aquifer. Moreover, groundwater and surface water are not isolated components of the hydrologic system, but instead interact in a variety of aspects in which development of one commonly affects the other. Additionally, the interaction is often complicated by agricultural activities including surface water diversion, groundwater pumping and irrigation. This study presents an integrated SWAT-MODFLOW model that couples land surface hydrology and groundwater hydrology to determine spatial groundwater percolation patterns considering allowable groundwater pumping rates for the Neishaboor watershed, Iran. Within the integrated model, the pumped groundwater is applied as irrigation to the cultivated fields within the SWAT model, with deep percolation from the soil profile bottom applied to the MODFLOW model as recharge. The model is tested against observed stream flow and water table elevation, with model output then used to assess and quantify spatial-temporal patterns of groundwater recharge to the aquifer.
Materials and Methods: The recently developed SWAT-MODFLOW modeling code simulates spatially-distributed hydrologic processes in the coupled land surface / aquifer system, with SWAT simulating land surface, soil zone, and stream flow routing processes and MODFLOW simulating groundwater flow and groundwater/surface water interaction processes. Modifications which is done to the modeling code includes: 1) Linking pumping from MODFLOW cells to SWAT HRUs for groundwater irrigation and 2) Imposing shallow water table percolation and lateral flow conditions for SWAT HRUs when the MODFLOW-simulated water table is within the soil profile of the HRU. The integrated SWAT-MODFLOW framework is tested in the Neishaboor watershed (9157 km2) for the 1998 to 2011 time period. Climate of the region is classified as semi-arid, with an average annual precipitation of 265 mm that varies considerably from one year to another. The mean annual temperatures changes from 13°C in the mountainous area to 13.8°C in the plain area and the annual potential evapotranspiration is about 2,335 mm. The main crops that are grown in the watershed is irrigated and rain fed wheat during fall and winter and corn silage during summer. Regarding previous studies, about 93.5% of the groundwater withdrawals in the Neishaboor watershed are consumed in agriculture, mostly for irrigation. Therefore, irrigation practices play a crucial role in the water resources balance in the study area. Within the integrated model, the pumped groundwater is applied as irrigation to the cultivated fields within the SWAT model, with deep percolation from the soil profile bottom applied to the MODFLOW model as recharge. The SWAT model was calibrated and tested in SWAT-CUP for the 2001-2009 and 2010-2011 periods, against stream flow and developed model was calibrated manually against groundwater level data.
Results and Discussion: Annual average recharge, calculated from the daily recharge values pass from SWAT to MODFLOW, demonstrating higher recharge rates in the alluvial fans and upland plain. Observed and simulated stream discharge in four hydrometric stations demonstrate good similarity results with the observed hydrograph. The NS values for monthly discharge rates are considered acceptable, however, the field-estimated stream flow estimates contain a high degree of uncertainty. Simulated cell-wise groundwater hydraulic head at the end of the simulation is compared with observation values with the highest water table elevation occurring in the north east and low water table elevation occurring in the outlet. Comparing observed and simulated average groundwater levels at the 48 monitoring wells, the deviation from the 45-degree line is less than 2.5 m for over 73% of the circles. The manual calibrated model can capture the main temporal trend. Overall, the model well captures the long-term characteristics of the regional groundwater level.
Conclusion: In this study, a new coupled model, referred to as SWAT-MODFLOW was used to model a dry and semi-arid region with a complicated irrigation system with groundwater pumping. A comprehensive model, will enable accurate simulations of stream flow and water table fluctuations in watersheds and aquifers respectably. In short, surface water infiltration is passed from SWAT to MODFLOW based on the contributing areas of the HRUs to the groundwater grid. Pumping agriculture water is then calculated and passed back to SWAT. The need for such a model is highlighted by the Neishaboor basin, where the agriculture is completely based on groundwater pumping. The case study in the Neishaboor basin demonstrated the applicability of the model for large, dry basins. The model will be used to determine best management practices for groundwater pumping in the region.

کلیدواژه‌ها [English]

  • Groundwater
  • Integrated model
  • Neishaboor
  • Surface Water
  • SWAT-MODFLOW
1- Aliyari F., Bailey R.T., Tasdighi A., Dozier A., Arabi M., and Zeiler K. 2019. Coupled SWAT-MODFLOW Model for Large-Scale Mixed Agro-Urban River Basins. Environmental Modelling and Software.
2- Alizadeh A., Izady A.A., Davari K., Ziaei A.N., Akhavan S., and Hamidi Z. 2013. Estimation of Actual Evapotranspiration at Regional – Annual scale using SWAT. Iranian Journal of Irrigation and Drainage 2(7): 243-254. (In Persian with English abstract)
3- Arnold J.G., Srinivasan R., Muttiah R.S., and Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development. JAWRA J. Am. Water Resour. Assoc. 34(1): 73-89.
4- Bailey R.T., Wible T.C., Arabi M., Records R. M., and Ditty J. 2016. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process 30: 4420–4433.
5- Bennett N.D., Croke B.F.W., Guariso G., Guillaume J.H.A., Hamilton S.H., Jakeman A.J., Marsili-Libelli S., Newham L.T.H., Norton J.P., Perrin C., Pierce S.A., Robson B., Seppelt R., Voinov A.A., Fath B.D., and Andreassian V. 2013. Characterising performance of environmental models. Environ. Model. Softw. 40: 1-20.
6- Borah D.K., and Bera M. 2003. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans. ASAE 46(6): 1553-1566.
7- Brunner P., and Simmons C.T. 2012. HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50(2): 170-176.
8- Christenson S., Osborn N.I., Neel C.R., Faith J.R., Blome C.D., Puckette J., and Pantea M.P. 2011. Hydrogeology and Simulation of the Groundwater Flow in the Arbuckle-Simpson Aquifer, South-Central Oklahoma. U.S. Geological Survey Scientific Investigations Report 2011-5029.
9- Chu T.W., and Shirmohammadi A. 2004. Evaluation of the SWAT model's hydrology component in the Piedmont physiographic region of Maryland. Trans. ASABE 47(4): 1057‐1073.
10- Chung I., Kim N., Lee J., and Sophocleous M. 2010. Assessing Distributed Groundwater Recharge Rate Using Integrated Surface Water-Groundwater Modelling: Application to Mihocheon Watershed, South Korea. Hydrogeol. J. 18: 1253-1264.
11- Chunn D., Faramarzi M., Smerdon B.D., and Alessi D.S. 2019. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water, 11(110).
12- Demetriou C., and Punthakey J.F. 1998. Evaluating sustainable groundwater management options using the MIKE SHE integrated hydrogeological modelling package. Environ. Model. Softw 14 (2-3): 129-140.
13- Fleckenstein J.H., Krause S., Hannah D.M., and Boano F. 2010. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources 33: 1291-1295.
14- Galbiati L., Bouraoui F., Elorza F.J., and Bidoglio G. 2006. Modeling diffuse pollution loading into a Mediterranean lagoon: development and application of an integrated surface-subsurface model tool. Ecological Modeling 193(1–2): 4–18.
15- Gannett M.W., Wagner B.J., and Lite Jr K.E. 2012. Groundwater simulation and management models for the Upper Klamath Basin, Oregon and California. U.S. Geological Survey Scientific Investigations Report 2012-5062.
16- Gassman P.W., Reyes M.R., Green C.H., and Arnold J.G. 2007. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE. 50(4): 1211-1250.
17- Gilfedder M., Rassam D.W., Stenson M.P., Jolly I.D., Walker G.R., and Littleboy M. 2012. Incorporating land-use changes and surface-groundwater interactions in a simple catchment water yield model. Environ. Model. Softw. 38: 62-73.
18- Graham D.N., and Butts M.B. 2005. Flexible, integrated watershed modelling with MIKE SHE. In: V.P., S., D.K., F (Eds.), Watershed Models. CRC Press, pp. 245-272.
19- Guzman J.A., Moriasi D.N., Gowda P.H., Steiner J.L., Starks P.J., Arnold J.G., and Srinivasan R. 2015. A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software 73: 103-116.
20- Harbaug A.W. 2005. MODFLOW-2005. The U.S. Geological Survey modular groundwater model-the ground-water flow process. USGS Techniques and Methods: 6-A16.
21- Huntington J.L., and Niswonger R.G. 2012. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour. Res. 48(11): W11524.
22- Izady A., Davary K., Alizadeh A., Ziaei A., Alipoor A., Joodavi A., and Brusseau M. 2014. A framework toward developing a groundwater conceptual model. Arabian Journal of Geosciences 7(9): 3611–3631.
23- Izady A., Davary K., Alizadeh A., Ziaei A., Akhavan S., Alipoor A., Joodavi A., and Brusseau M. 2015. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeol J. 23(1): 47–68.
24- Kim NW., I.M. Chung., Y.S. Won., and Arnold J.G. 2008. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 356: 1–16.
25- Luo Y., and Sophocleous M. 2011. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. J. of Arid Land. 3(3): 164-173.
26- Markstrom S.L., Niswonger R.G., Regan R.S., Prudi, D.E., and Barlow P.M. 2008. GSFLOW-Coupled Ground-water and Surface-water FLOW Model Based on the Integration of the Precipitation-runoff Modeling System (PRMS) and the Modular Ground-water Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1, 240pp.
27- Markstrom S.L. 2012. Integrated Watershed-scale Response to Climate Change for Selected Basins across the United States. U.S. Geological Survey Scientific Investigations Report 2011-5077, 143pp.
28- Mashburn S.L., Ryter D.W., Neel C.R., Smith S.J., and Magers J.S. 2013. Hydrogeology and Simulation of Groundwater Flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 10987 to 2009, and Simulation of Available Water in Storage, 2010-2059. U.S. Geological Survey Scientific Investigations Report 2013-5219.
29- McDonald M.G., and Harbaugh A.W. 1988. A modular three dimensional finite-difference ground-water flow model. Techniques of Water Resources Investigations, Book 6. Reston, Virginia, U.S. Geological Survey.
30- Menking K.M., Syed K.H., Anderson R.Y., Shafike N.G., and Arnold J.G. 2003. Model estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA. Hydrological Sciences Journal, 48(6): 953–970.
31- Ministry of Power. 2011, Final report of extended ban: Khorasan-e-Razavi Regional Water Company, Office of Basic Studies of Water Resources. (In Persian)
32- Molina-Navarro E., Bailey R.T., Andersen H.E., Thodsen H., Nielsen A., Seonggyu P., Jensen J.S., Jensen J.B., and Trolle D. 2019. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrological Sciences Journal.
33- Nazarieh F., Ansari H., Ziaei A.N., Davari K., and Izady A.A. 2017. Estimation of the Recharge spatiotemporal pattern by Distribute PRMS model (Case study: Neishaboor watershed). Journal of Iran-Water Resources Research 20(14-1): 226-238. (In Persian with English abstract)
34- Niswonger R.G., Prudic D.E., and Regan R.S. 2006. Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005, USGS Techniques and Methods 6-A19.
35- Niswonger R.G., Prudic D.E., Fogg G.E., Stonestrom D.A., and Buckland E.M. 2008. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resour. Res. 44 (5), W05418.
36- Niswonger R.G., Panday S., and Ibaraki M. 2011. MODFLOW-NWT, A Newton formulation for MODFLOW-2005: USGS Survey Techniques and Methods 6–A37.
37- Panday S., and Huyakorn P.S. 2004. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour 27(4): 361-382.
38- Paschke S.S. 2011. Groundwater Availability of the Denver Basin Aquifer System, Colorado. U.S. Geological Survey Professional Paper 1770.
39- Perez A.J., Abrahao R., Causape J., Cirpka O.A., and Bürger C.M. 2011. Simulating the transition of a semi-arid rainfed catchment towards irrigation agriculture. J. Hydrol. 409 (3-4): 663-681.
40- Peterson J.R., and Hamlet J.M. 1998. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils. JAWRA. 34(3): 531‐544.
41- Rassam D.W., Peeters L., Pickett T., Jolly I., and Holz L. 2013. Accounting for surface-groundwater interactions and their uncertainty in river and groundwater models: a case study in the Namoi River, Australia. Environ. Model. Softw. 50(0): 108-119.
42- Rumman M.A., and Payne D.F. 2003. Model Framework and Preliminary Results of the Regional MODFLOW Ground-Water Flow Model of Costal Georgia, South Carolina, and Florida. 2003. Proceedings of the 2003 Georgia Water Resources Conference held April 23-24, 2003, at the University of Georgia.
43- Santhi C., Arnold J.G., Williams J.R., Dugas W.A., Srinivasan R., and Hauck L.M. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. American Water Resources Assoc. 37(5): 1169-1188.
44- Siebert S., Burke J., Faures J.M., Frenken K., Hoogeveen J., Doll P., and Portmann F.T. 2010. Groundwater use for irrigation - a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7(3): 3977-4021.
45- Sophocleous M.A., Koelliker J.K., Govindaraju R.S., Birdie T., Ramireddygari S.R., and Perkins S.P. 1999. Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in southecentral Kansas. J. Hydrol. 214(1-4): 179-196.
46- Sophocleous M., and Perkins S.P. 2000. Methodology and application of combined watershed and ground-water models in Kansas. J. Hydrol. 236(3–4): 185–201.
47- Sophocleous M. 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeol. J. 10(1): 52-67.
48- Spruill C.A., Workman S.R., and Taraba J.L. 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. ASAE 43(6): 1431‐1439.
49- Srivastava P., McNair J.N., and Johnson T.E. 2006. Comparison of process‐based and artificial neural network approaches for streamflow modeling in an agricultural watershed. JAWRA 42(2): 545‐563.
50- Therrien R., McLaren R.G., Sudicky E.A., and Panday S.M. 2010. HydroGeoSphere A Three-dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute Transport. Technical report.
51- Tian Y, Zheng Y, Wu B, Wu X, Liu J, and Zheng C. 2015. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environmental Modeling and Software 63: 170-184.
52- VanderKwaak J.E., and Loague K. 2001. Hydrologic-Response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour. Res. 37(4): 999-1013.
53- Van Genuchten M., Leij F., and Yates S. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Technical Report EPA/600/2-91/065, US Environmental Protection Agency.
54- Velayati S., and Tavasoli S. 1991. Khorasan Water Resources and Issues. Astan Quds Razavi Printing and Publishing Company, Mashhad. (In Persian)
55- Wei X., Bailey R.T., Records R.M., Wible T.C., and Arabi M. 2018. Comprehensive Simulation of Nitrate Transport in Coupled Surface-Subsurface Hydrologic Systems using the linked SWAT-MODFLOW-RT3D model, Environmental Modelling and Software.
56- Werner A.D., Gallagher M.R., and Weeks S.W. 2006. Regionale-scale, fully coupled modelling of stream-aquifer interaction in a tropical catchment. J. Hydrol. 328(3-4): 497-510.
CAPTCHA Image