معرفی کی‌لیت‌های اسید آمینه و کیتوسان آهن به عنوان منبع قابل دسترس آهن در محلول غذایی برای گیاهان با استراتژی I و II

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 ؟

3 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

4 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استاد گروه شیمی، دانشگاه پیام نور مرکز مشهد

چکیده

فراهمی مقدار کافی از عنصر آهن قابل دسترس برای گیاهان در محلول‌های غذایی یک چالش بزرگ است. کی‌لیت کننده‌های رایج که در محلول‌های غذایی برای فراهمی عنصر آهن استفاده می‌شوند، مضرات زیادی دارند و می‌توانند اثرات منفی روی رشد گیاهان داشته باشند. در این تحقیق کی‌لیت‌های اسیدهای آمینه و آهن شامل گلایسین-آهن (Fe-Gly)، فنیل آلانین-آهن (Fe-Phe)، تیروزین-آهن (Fe-Tyr) و متیونین–آهن (Fe-Met) و کی‌لیت‌های کیتوسان به دو فرم هیدرولیز شده‌ی اسیدی [Fe-C(A.hyd)] و آنزیمی [Fe-C(E.hyd)] سنتز و ویژگی‌های شیمیایی آنها با اسپکتروسکوپی IR و آنالیز CHN انجام شد. سپس کارایی این منابع آهن در مقایسه با Fe-EDDHA برای دو گیاه لوبیا (استراتژی I) و ذرت (استراتژی II) در محیط آبکشت بررسی گردید. کاربرد برخی از کی‌لیت‌های آلی اسیدهای آمینه و کیتوسان به طور معنی‌داری وزن خشک اندام هوایی گیاهان را در مقایسه با Fe-EDDHA افزایش داد. بیشترین مقدار آهن در اندام هوایی گیاهان ذرت و لوبیا در کاربرد کی‌لیت‌های Fe-Tyr، Fe-Met و [Fe-C(A.hyd)] مشاهده گردید. کاربرد کی‌لیت‌های مورد مطالعه منجر به تجمع آهن در ریشه‌ها گردید، لیکن بیشترین مقدار انتقال آهن به اندام‌های هوایی در گیاهانی که در معرض کی‌لیت‌های [Fe-C(A.hyd)] و Fe-Tyr بودند، اتفاق افتاد. بیش از 50 درصد آهن در کمپلکس با Fe-Tyr در گیاه لوبیا و در کمپلکس با Fe-C(A.hyd) در ذرت و لوبیا از ریشه به اندام‌های هوایی انتقال یافتند. استفاده از کی‌لیت‌های آلی آهن در محیط رشد گیاه فعالیت آنزیم فریک کیلیت رداکتاز (FCR) برگ را در دو گیاه لوبیا و ذرت در مقایسه با Fe-EDDHA افزایش داد. با این‌حال میانگین کلی فعالیت این آنزیم در گیاه لوبیا بیشتر از ذرت بود. نتایج به دست آمده نشان داد که استفاده از برخی کی‌لیت‌های آلی آهن در محلول‌های غذایی در مقایسه با Fe-EDDHA می‌تواند مقادیر کافی از آهن را برای جذب گیاه فراهم کند و همچنین رشد اندام هوایی و ریشه گیاه لوبیا و ذرت را بهبود بخشد. بر طبق نتایج این کی‌لیت‌ها می‌توانند به عنوان یک جانشین برای فراهمی آهن به جای Fe-EDDHA در محلول‌های غذایی به کار روند.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing Amino Acid and Chitosan Iron Chelates as Available Sources of Iron in Nutrient Solutions by Strategy I and II Plants

نویسندگان [English]

  • atena mirbolook 1
  • Mirhasan Rasouli-Sadaghiani 2
  • E. Sepehr 3
  • A. Lakzian 4
  • M. Hakimi 5
1 urmia university
3 Associate Professor Soil Science, Soil Science Department, Faculty of Agriculture, Urmia University, Urmia, Iran
4 Proffesor Soil Science, Soil Science Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
5 Proffesor Chemistry, Chemistry Department, Payam Noor University og Mashhad, Iran
چکیده [English]

Introduction: Iron (Fe) is an important micronutrient that plays a role in several crop physiological processes such as photosynthesis, respiration, and synthesis of heme proteins, DNA, RNA, and hormones. The most common Fe source used in agriculture is Fe-EDDHA. However, the usage of this chelate may be problematic for plant growth. In the recent years, organic chelates have gained attention as they increase the microelements solubility and prevent iron precipitation in nutrient solution. Organic chelates such as amino acids and polysaccharides have many physicochemical (reactive OH, COOH and NH2 groups) and biological (biocompatible and biodegradable) properties that make these attractive materials usable for the agricultural practice. Biodegradability, low toxicity, immune system stimulation, the ability to coordinate metal, less sensitivity to photodegradation, and the effect on physical properties of rhizosphere and root growth dynamic are ideal properties of these components. The objective of this study was to evaluate Fe-organic-chelates efficiency as Fe sources for bean (Strategy I) and corn (Strategy II) growth in the hydroponic system.
Materials and Methods: In this research, we synthesized Fe-amino acid chelates including  Fe-Glycine (Fe-Gly), Fe-Phenylalanine (Fe-Phe), Fe-Tyrosine (Fe-Tyr), Fe-Methionine (Fe-Met), and Fe chitosan chelates in two forms of acidic hydrolyzed chitosan [Fe-C(A.hyd)] and enzymatic hydrolyzed chitosan [Fe-C(E.hyd)] and characterized by FTIR and CHN analyzer. The efficiency of these iron sources for bean (Strategy II) and corn (Strategy I) in hydroponic system was then evaluated. Seeds of bean and corn were washed with distilled water and transplanted into special containers containing coco peat, perlite and vermicompost (1:1:1) at 25 °C for germination and initial growth. The seedlings were transferred to polyethylene plastic lids fitting tightly over 8-L polyethylene containers under controlled conditions in the greenhouse with a light period of 8 hours per day, the temperature of 20 to 25°C and relative humidity of 65 to 75%. The pots were stacked in black color to prevent light reaching the root of the plant and the solution. In each pot, one plant seedling was placed and the basic nutrient solution was prepared in deionized water. The plants were harvested after 8 weeks, their root and shoot were separated and dried after washing with distilled water in an oven at 75 ° C. The dried samples were ground to fine powder to pass through a 20-mesh sieve. The analysis of Fe in samples was performed using atomic absorption spectrophotometer.
Result and Discussion: Application of organic chelates of amino acids and chitosan increased the shoot dry matter per plant compared to Fe-EDDHA. Fe content in shoot of corn and bean was highest using Fe-Tyr, Fe-Met and [Fe-C(A.hyd)]. Uptake and accumulation of Fe in roots were observed by using all chelates, but the highest translocation factor was found for the treatments including [Fe-C(A.hyd)] and Fe-Tyr. Translocation factor in bean plants was higher than corn, and around half of Fe in bean plants was translocated from root to shoot. The use of iron chelates in plant growth medium increased the activity of ferric chelates reductase enzymes in bean and corn compared to Fe-EDDHA. However, the mean of this enzyme activity in bean was higher than that in corn. Therefore, the activity of this enzyme can be used as an indicator for determining the iron availability in leaf cells in Strategy I and Strategy II plants. In general, the plants need less energy to absorb Fe when the chelates with a simpler structure are used.
Conclusion: The results indicated that using Fe organic chelates in the hydroponic system could supply sufficient amounts of iron for the plant uptake and also improve the root and the shoot growth of bean and corn. Overall, the effect of Fe organic chelates on Fe content of bean and corn shoots was in the following order: Fe- Chi(A.hyd) > Fe-Tyr > Fe-Met > Fe-Gly >. Activity of leaf ferric chelate reductase in bean was higher than that in corn.

کلیدواژه‌ها [English]

  • Amino acids
  • Bean
  • Corn
  • Chitosan
  • Leaf ferric chelate reductase
  • Translocation factor
  1. Aciksoz S.B., Atilla Y., and Levent O. 2011. "Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Journal Plant and Soil 349(1-2): 215-225.
  2. Águila-Almanza E., René S., Zully V.G., Edgar G.H., and Heriberto H.C. 2019. Enzymatic Depolimerization of Chitosan for the Preparation of Functional Membranes. 2019. Journal of Chemistry.
  3. Albano Joseph P., and William B Miller. 2001. Photodegradation of FeDTPA in nutrient solutions. I. Effects of irradiance, wavelength, and temperature. HortScience 36 (2): 313-316.
  4. Álvarez-Fernández A., García-Laviña P., Fidalgo C., Abadía J., and Abadía A. 2004. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Journal Plant and Soil 263(1): 5-15.
  5. Belokon Yuri N., Vladimir I Bakhmutov., Nina I Chernoglazova., Konstantin A Kochetkov., Sergei V Vitt., Natalia S Garbalinskaya., and Vasili M %J Belikov, Perkin. 1988. General method for the asymmetric synthesis of α-amino acids via alkylation of the chiral nickel (II) Schiff base complexes of glycine and alanine. Journal of the Chemical Society (2): 305-312.
  6. Bradford Marion M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Journal Analytical Biochemistry 72(1-2): 248-254.
  7. Brüggemann W., Klaudia M.K., and Petra R. 1993. Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Journal Planta Moog 190(2): 151-155.
  8. Caiqin Q., Xiao L., Du Y., Shi X., and Chen J. 2002. A new cross-linked quaternized-chitosan resin as the support of borohydride reducing agent. Reactive and Functional Polymers 50(2):165-171.
  9. Cerdán M., Antonio Sánchez‐Sánchez, Margarita J., Juan J Sánchez‐Andreu, Juana D Jordá., and Dolores B. 2007. Partial replacement of Fe (o, o‐EDDHA) by humic substances for Fe nutrition and fruit quality of citrus. Journal of Plant Nutrition and Soil Science 170(4): 474-478.
  10. Chaney Rufus L., John C Brown., and Lee O Tiffin. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50(2): 208-213.
  11. Chapman Homer D., and FP Pratt. 1961. Methods of analysis for soils, plants and waters, Univ. of California Div." Journal Agrculture Science 168-169.
  12. Chen L., Adriana O.L., Alan J., and Daniel R Bush. 2001. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiology 125(4): 1813-1820.
  13. El Bassiouny HMS., and HA Mostafa. 2008. "Physiological responses of wheat plant to foliar treatments with arginine or putrescine."
  14. Garcia-Brugger A., Olivier L., Elodie V., Stéphane B., Lecourieux D., Poinssot B., Wendehenne D., and Alain P. 2006. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19(7): 711-724.
  15. Ghasemi S., Khoshgoftarmanesh A.H., Hadadzadeh H., and Afyuni M. 2013. Synthesis, characterization, and theoretical and experimental investigations of zinc (II)–amino acid complexes as ecofriendly plant growth promoters and highly bioavailable sources of zinc. Journal of Plant Growth Regulation 32(2): 315-323.
  16. Ghasemi S., Khoshgoftarmanesh A.H., Hadadzadeh H., and Jafari M. 2012. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. Journal of Plant Growth Regulation 31(4): 498-508.
  17. Hangarter Roger P., and Triant C Stasinopoulos. 1991. "Effect of Fe-catalyzed photooxidation of EDTA on root growth in plant culture media. Plant Physiology 96(3): 843-847.
  18. Hoell Ingunn A., Gustav V.K., and Vincent GH Eijsink. 2010. Structure and function of enzymes acting on chitin and chitosan. Biotechnology and Genetic Engineering Reviews 27(1): 331-366.
  19. Hsu Hsin-Hung. 1986. Chelates in Plant Nutritio.
  20. Jones D.L., Hodge A., and Kuzyakov Y. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163(3): 459-480.
  21. Jones DL., and Hodge A. 1999. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology and Biochemistry 31(9): 1331-1342.
  22. Kang Seong I., and You Han Bae. 2003. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. Journal of Controlled Release 86(1): 115-121.
  23. Kobayashi T., and Naoko K Nishizawa. 2012. "Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63: 131-152.
  24. Kosegarten H., Hoffmann B., and Mengel K. 2001. The paramount influence of nitrate in increasing apoplastic pH of young sunflower leaves to induce Fe deficiency chlorosis, and the re‐greening effect brought about by acidic foliar sprays. Journal of Plant Nutrition and Soil Science 164(2): 155-163.
  25. Kulikov S.N., Svetlana A Lisovskaya., Pavel V Zelenikhin., Evgeniya A Bezrodnykh., Diana R Shakirova., Inesa V Blagodatskikh., and Vladimir E Tikhonov. 2014. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: Molecular weight–activity relationship. European Journal of Medicinal Chemistry 74: 169-178.
  26. Kulikov S., Tikhonov V., Blagodatskikh I., Bezrodnykh E., Lopatin S., Khairullin R., Philippova Y., and Sergey Abramchuk. 2012. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers 87(1): 545-550.
  27. Kutman U Baris., Yildiz B., Ozturk L., and Cakmak. 2010. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Ismail Journal Cereal Chemistry 87(1): 1-9.
  28. López M., Flor A., Michael A Grusak., Anunciación A., and Javier A. 2013. Iron deficiency in plants: an insight from proteomic approaches. Frontiers in Plant Science 4:254.
  29. Lucena Juan J. 2006. Synthetic iron chelates to correct iron deficiency in plants. In Iron nutrition in plants and rhizospheric microorganisms. 103-128. Springer.
  30. Lucena Juan J., Agustín G., and Villén M. 2010. Stability in solution and reactivity with soils and soil components of iron and zinc complexes. Journal of Plant Nutrition and Soil Science 173(6): 900-906.
  31. Manthey JA., DL McCoy., and DE Crowley. 1994. Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in citrus rootstocks. Plant Physiology and Biochemistry.
  32. Marschner H. 1995. Function of mineral nutrients: micronutrients. Mineral nutrition of higher plants.
  33. Marschner H. 2011. Marschner's mineral nutrition of higher plants: Academic press.
  34. Metsärinne S., Rantanen P., Aksela R., and Tuhkanen T. 2004. Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe (III). Chemosphere 55(3): 379-388.
  35. Mikami Y., Saito A., Miwa E., Higuchi K. 2011. Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiology and Biochemistry 49(5): 513-519.
  36. Muhammad A., WT Frankenberger Jr. 1990. Response of Zea mays and Lycopersicon esculentum to the ethylene precursors, smallcap˜ L-methionine and smallcap˜ L-ethionine applied to soil. Plant and Soil 122(2): 219-227.
  37. Näsholm T., Kielland K., and Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182(1): 31-48.
  38. Ngatia EM., Gathece LW., Macigo FG., Mulli TK., Mutara LN., and Wagaiyu LG. 2008. Nutritional and oral health status of an elderly population in Nairobi. East African Medical Journal 85(8): 378-385.
  39. Nomiya K., and Yokoyama H., Transactions D. 2002. Syntheses, crystal structures and antimicrobial activities of polymeric silver (I) complexes with three amino-acids [aspartic acid (H 2 asp), glycine (Hgly) and asparagine (Hasn)]. Journal of the Chemical Society (12): 2483-2490.
  40. Okamoto M., and Okada K. 2004. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops. Journal of Experimental Botany 55(402): 1577-1585.
  41. Pantaleone D., and Yalpani M. 1992. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydrate Research Scollar 237(1): 325-332.
  42. Prabaharan M., and JF Mano. 2004. Chitosan-based particles as controlled drug delivery systems. Drug Delivery 12(1): 41-57.
  43. Ramírez MA., T Rodríguez A., Alfonso L., and Peniche C. 2010a. Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnología Aplicada 27(4): 270-276.
  44. Ramírez MA., T Rodríguez A., Alfonso L., and Peniche C. 2010b. Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnología Aplicada 27(4): 270-276.
  45. Rashad El-Sh M., El-Abagg HM., and Amin AA. 2003. Physiological effects of some bioregulators on growth and productivity of two broad bean cultivars. Egypt Journal Appl Science 18: 132-149.
  46. Rombolà AD., Brüggemann W., Tagliavini M., Marangoni B., and Moog PR. 2000. Iron source affects iron reduction and re‐greening of kiwifruit (Actinidia deliciosa) leaves. Journal of Plant Nutrition 23(11-12): 1751-1765.
  47. Ruiz Juan M., Baghour M., and Romero L. 2000. Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition 23(11-12): 1777-1786.
  48. Sánchez A.S., Margarita J., Sánchez-Andreu J., Jordá J., and Bermúdez D. 2005. Use of humic substances and amino acids to enhance iron availability for tomato plants from applications of the chelate FeEDDHA. Journal of Pant Nutrition 28(11): 1877-1886.
  49. Smith Brandon R., and Cheng L. 2007. Iron assimilation and carbon metabolism in ‘Concord’grapevines grown at different pHs. Journal of the American Society for Horticultural Science 132(4): 473-483.
  50. Smith Robert M., and Arthur E Martell. 1987. Critical stability constants, enthalpies and entropies for the formation of metal complexes of aminopolycarboxylic acids and carboxylic acids. Science of the Total Environment 64(1-2): 125-147.
  51. Svennerstam H., Ulrika G., and Näsholm T. 2008. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytologist 180(3): 620-630.
  52. Vadas Timothy M., Zhang X., Ashley M Curran., and Beth A Ahner. 2007. Fate of DTPA, EDTA, and EDDS in hydroponic media and effects on plant mineral nutrition. Journal of Plant Nutrition 30(8): 1229-1246.
  53. Villén M., Lucena J.J., Carmen Cartagena M., Raquel B., Josemaría García-M., and Ignacia Martín de la Hinojosa M. 2007. Comparison of two analytical methods for the evaluation of the complexed metal in fertilizers and the complexing capacity of complexing agents. Journal of Agricultura and Food Chemistry 55(14): 5746-5753.
  54. Yildiz Dasgan H., Levent O., Abak K., and Cakmak. 2003. Activities of Iron‐Containing Enzymes in Leaves of Two Tomato Genotypes Differing in Their Resistance to Fe Chlorosis. Journal of Plant Nutrition 26(10-11): 1997-2007.
  55. Zhang Y., Rongli Shi., Karim Md R., Fusuo Z., Chunqin Z. 2010. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry 58(23): 12268-12274.
CAPTCHA Image