تأثیر باکتری‌های محرک رشد گیاه بر فعالیت برخی آنزیم‌های منطقه ریزوسفر تحت تنش سرب و کادمیم

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 استادیار گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زنجان

چکیده

به منظور بررسی تأثیر باکتری‌های محرک رشد گیاه بر فعالیت آنزیم‌های منطقه ریزوسفر یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در گلخانه تحقیقاتی دانشگاه زنجان اجرا گردید. تیمارها شامل سه رقم کلم، شامل کلم زینتی (Brassica oleracea var. acephala L.)، کلم برگ (Brassica oleracea var. capitata L.) و کلم بروکلی (Brassica oleracea var. italica L.) و شش سطح تلقیح با باکتری‌های محرک رشد گیاه‎، شاملPseudomonas putida PTCC1694، Bacillus megaterium PTCC1656، Bacillus subtilis PTCC1715،p roteus vulgaris PTCC1079 ، Azotobacter chroococcum و یک تیمار بدون تلقیح بود. به منظور بررسی دقیق‌تر منطقه ریزوسفری از ریزوباکس استفاده و سه عدد نشاء کلم در قسمت مرکزی هر ریزوباکس (منطقه ریزوسفری) کشت گردید. پس از گذشت سه ماه گیاه کلم برداشت و فعالیت آنزیم‌های فسفاتاز قلیایی، فسفاتاز اسیدی، اوره‌آز و دی‌هیدروژناز در خاک ریزوسفری اندازه‌گیری گردید. نتایج تجزیه واریانس داده‌ها نشان داد که رقم کلم، گونه باکتری‌ و اثرات متقابل آن‌ها تأثیر معنی‌داری در سطح احتمال یک درصد (01/0>p) بر فعالیت آنزیم‌های منطقه ریزوسفر داشتند. مقایسه میانگین‌ها نشان داد که بیش‌ترین فعالیت آنزیم‌های‌ فسفاتاز قلیایی و اسیدی مربوط به خاک ریزوسفری تلقیح شده با باکتری P. putida، بیش‌ترین فعالیت آنزیم‌‌ اوره‌آز مربوط به خاک ریزوسفری تلقیح شده با باکتری A. chroococcum و بیش‌ترین فعالیت آنزیم دی‌هیدروژناز مربوط به خاک ریزوسفری تلقیح شده با باکتری B. subtilis بود. بر این اساس می‌توان گفت حضور باکتری‌های محرک رشد گیاه در خاک می‌تواند اثرات سمی فلزات سنگین بر گیاه را تعدیل و فعالیت برخی از آنزیم‌های کلیدی برای رشد گیاه در خاک ریزوسفری را افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Plant Growth Promoting Rhizobacteria on the Activity of some Enzymes in Rizosphere Soils under Lead and Cadmium Stress

نویسندگان [English]

  • S. Abdollahi 1
  • A. Golchin 2
  • F. Shahryari 3
1 Ph.D. Soil Science Department, Faculty of Agriculture University of Zanjan
2 Professor, Soil Science Department, Faculty of Agriculture University of Zanjan
3 Assistant Professor, Plant Protection Department, Faculty of Agriculture, University of Zanjan
چکیده [English]

Introduction: Contamination of soils with heavy metals is one of the most serious environmental problems increasing the risk of the entry of heavy metals into food chains. Rhizosphere soil is distinct from the bulk soil and is defined as the volume of soil around living roots which is influenced by root activities. Enzymes are produced by both roots and soil microorganisms to alter nutrient availability in rhizosphere soil. Soil enzymes promote the transformation of matter and energy in the soil, and their activity has a close relationship with soil nutrient availability. Detection of microbial enzymes in a natural environment is important to understand biochemical activities and to verify the biotechnological potential of microorganisms. However, there are few reports to indicate the biotechnological potential of plant growth promoting rhizobacteria (PGPR) and their effects on the activity of bacterial enzymes in rhizosphere soils under the stress of heavy metals. Thus, in the present study lead and cadmium contaminated rhizosphere soils were inoculated with PGPR species to investigate the influence of these bacteria on the activity of some enzymes.
Materials and Methods: A factorial pot experiment with completely randomized design base and three replications was performed in the greenhouse conditions. The factors examined were (a) rhizosphere soils of three varieties of cabbage [Brassica oleracea var. acephala L. (Ornamental cabbage), Brassica oleracea var. italica L. (Broccoli cabbage) and Brassica oleracea var. capitata L. (Cabbage)] and (b) five species of PGPR, consisting Pseudomonas putida PTCC 1694, Bacillus megaterium PTCC 1656, Proteus vulgaris PTCC 1079, Bacillus subtilis PTCC 1715 and Azotobacter chroococcum, used to inoculate the rhizosphere soils. There was also a control treatment (without rhizobacteria). The experiment had 18 treatments and there were 54 experimental units. To study rhizosphere soils, several rhizoboxes were used and three seedlings of cabbage were planted in the central part of each rhizobox (rhizosphere area). In treatments inoculated with rhizobacterial species, 2 ml of a bacterial suspension with 107-108 (cfu ml-1) was used to inoculate the soil of rootzone. After three months, cabbage varieties were harvested and the activity of alkaline phosphatase, acid phosphatase, urease, and dihydrogenase were measured in rhizosphere soils. The data obtained from this study were statistically analyzed by SPSS statistical software package (Version 9.4) and the variance of the data was analyzed by one-way ANOVAs (Duncan’s test) range test at 1 and 5 percent probability levels.
Results and Discussion: The analysis of variance of the data (ANOVA) showed that the cabbage varieties, inoculation with PGPR species and their interactions had significant effects (p < 0.01) on the activity of alkaline phosphatase, acid phosphatase, urease, and dihydrogenase in rhizosphere soils. The results showed that inoculation of the rhizosphere soils with PGPR species increased the activity of soil enzymes. The highest activity of alkaline phosphatase (1529.28 µg pNP.g-1 dm.h-1) was measured in rhizosphere soils of the broccoli inoculated with Pseudomonas putida PTCC 1694. But, the highest activity of acid phosphatase (497.92 µg pNP.g-1dm.h-1) was obtained in rhizosphere soils of cabbage inoculated with Pseudomonas putida PTCC 1694. Also, the highest activity of urease (208.36 µg N-NH4+.g-1dm.2h-1) was observed in rhizosphere soils of the cabbage inoculated with Azotobacter chroococcum and the highest activity of dihydrogenase (8.71 µg TPF.g-1dm.16h-1) was observed when rhizosphere soils of the cabbage were inoculated with Bacillus subtilis PTCC1715.
Conclusion: From the results of this study, it may be concluded that inoculation of Pb and Cd contaminated soils with PGPR species could modulate the toxic effects of heavy metals on plant and increase the activity of some key enzymes for plant growth in rhizosphere soils.

کلیدواژه‌ها [English]

  • Acid phosphatase
  • Alkaline phosphatase
  • Enzyme
  • Dihydrogenase
  • Rhizobox
  • Urease
1.     Abd W.M., Shahin R.R., Khater H.A., and Ali M. 2013. Isolation and identification of heavy-metal resistant soil bacteria. American-Eurasian Journal Of Agricultural and Environmental Sciences 13: 831-838.
2.     Aghababaei F., Raiesi F., and Hosseinpur A. 2013. The Influence of Earthworm and Arbuscular Mycorrhizal Fungi on Microbial Biomass Carbon and Enzyme Activity in a Soil Contaminated with Cadmium in Sunflower (Helianthus annuus L.) Cultivation Journal of Water and Soil 27: 949-962.
3.     Akmal M., and Jianming X. 2008. Dehydrogenase, urease and phosphatase activities as affected by Pb contamination in the Soil. Soil and Environmental 27: 139-142.
4.     Alloway B.J. 1995. Heavy metals in soils, 2nd edn. Blackey Academic and Professional.
5.     Aseri G.K., Jain N., and Tarafdar J.C. 2009. Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. American-Eurasian Journal Of Agricultural and Environmental Sciences 5: 564-570.
6.     Badalucco L., Grego S., Dell'Orco S., and Nannipieri P. 1992. Effect of liming on some chemical, biochemical, and microbiological properties of acid soils under spruce (Picea abies L.). Biology and Fertility of Soils 14: 76-83.
7.     Badiane N.N.Y., Chotte J.L., Pate E., Masse D., and Rouland C. 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology 18: 229-238.
8.     Bagheri S. and Mirseyed Hosseini H. 2015. Study of effects of sorghum cultivation on some soil biological indicators at different zinc levels. Journal of Water and Soil 28: 1217-1227.
9.     Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54: 464-465.
10.   Çakmakçı R., Erat M., Erdoğan Ü., and Dönmez M.F. 2007. The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science 170: 288-295.
11.   Cheng-li C.H., Min L., and Chang-yong H. 2005. Effect of combined pollution by heavy metals on soil enzymatic activies area polluted by tailings from Pb-Zn-Ag mine. Journal of Environmental Sciences 17: 637-640.
12.   Demchak K. and Smith C. 1990. Yield responses and nutrient uptake of broccoli as affected by lime type and fertilizer. Journal of the American Society for Horticultural Science 115: 737-740.
13.   Deng L., Zeng G., Fan C., Lu L., Chen X., Chen M., Wu H., He X., and He Y. 2015. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Applied Microbiology and Biotechnology 99: 8259-8269.
14.   Gardner T., Acosta-Martinez V., Senwo Z., and Dowd S.E. 2011. Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity 3: 308-328.
15.   Gianfreda L. and Ruggiero P. 2006.  Enzyme Activities in Soil. pp. 257-311, Nucleic Acids and Proteins in Soil. Springer.
16.   Guimarães L.H.S., Peixoto-Nogueira S.C., Michelin M., Rizzatti A.C.S., Sandrim V.C., Zanoelo F.F., Aquino A.C.M., Junior A.B., and Polizeli M.d.L. 2006. Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology 37: 474-480.
17.   Gunes A., Karagoz K., Turan M., Kotan R., Yildirim E., Cakmakci R., and Sahin F. 2015. Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Research journal of soil biology 7: 28-45.
18.   Hinsinger P., Gobran G.R., Gregory P.J., and Wenzel W.W. 2005. Rhizosphere geometry and heterogeneity arising from root‐mediated physical and chemical processes. New Phytologist 168: 293-303.
19.   Hseu Z.Y. 2004. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technology 95: 53-59.
20.   Hübel F. and Beck E. 1993. In-situ determination of the P-relations around the primary root of maize with respect to inorganic and phytate-P. Plant and Soil 157: 1-9.
21.   Islam M., Shaheb M., Rahman S., Ahmed B., Islam A., and Sarker P. 2010. Curd yield and profitability of broccoli as affected by phosphorus and potassium. International Journal of Sustainable Crop Production 5: 1-7.
22.   Jalil A., Selles F., and Clarke J.M. 1994. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. Journal of Plant Nutrition 17: 1839-1858.
23.   Kader M.A., Mian M.H., and Hoque M.S. 2002. Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. International Journal of Biological Sciences 2: 259-261.
24.   Kai M., Takazumi K., Adachi H., Wasaki J., Shinano T., and Osaki M. 2002. Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Science 163: 837-846.
25.   Karaca A., Naseby D.C., and Lynch J.M. 2002. Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium. Biology and Fertility of Soils 35: 428–434.
26.   Khan A., Jilani G., Akhtar M.S., Saqlan Naqvi S., and Rasheed M. 2009. Phosphorus solubilizing bacteria: Occurrence, Mechanisms and their role in crop production. Agricultural biology Science 1: 48-58.
27.   Kızılkaya R., Aşkın T., Bayraklı B., and Sağlam M. 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40: 95-102.
28.   Lakshminarayana K. 1993. Influence of Azotobacter on Nitrogen Nutrition of Plants and Crop Productivity. Proceedings of the Indian National Science Academy Part B Biological Sciences 3-4: 303-308.
29.   Lindsay W.L. and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
30.   Mäder P., Kaiser F., Adholeya A., Singh R., Uppal H.S., Sharma A.K., Srivastava R., Sahai V., Aragno M., and Wiemken A. 2011. Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry 43: 609-619.
31.   Makoi J.H. and Ndakidemi P.A. 2008. Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology 7: 181-191.
32.   Nannipieri P., Grego S., Ceccanti B., Bollag J.M., and Stotzky G. 1990.  Ecological Significance of the Biological Activity in Soil. pp. 293-355, in: Bollag J.M. and Stozky G. (Ed.), Soil biochemistry, vol.6.
33.   Naseby D.C. and Lynch J.M. 1998. Impact of wild type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Molecular Ecology Notes 7: 617–625.
34.   Norwood W.P., Borgmann U., Dixon D.G., and Wallace A. 2003. Effect of metal mixtures on aquatic biota: a review of observations and methods. Human and Ecological Risk Assessment 9: 795–811.
35.   Ouda B.A. and Mahadeen A.Y. 2008. Effect of fertilizers on growth, yield, yield components, quality and certain nutrient contents in broccoli (Brassica oleracea). International Journal of Agriculture and Biology 10: 627-632.
36.   Papa S., Bartoli G., Pellegrino A., and Fioretto A. 2010. Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment 165: 193-203.
37.   Parmar P. and Sindhu S.S. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research 3: 25-31.
38.   Pilar M.C., Ortega N., Perez-Mateos M., and Busto M.D. 2009. Alkaline phosphatase− polyresorcinol complex: characterization and application to seed coating. Journal of Agricultural and Food Chemistry 57: 1967-1974.
39.   Qu J., Ren G., Chen B., Fan J., and Yong E. 2011. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environmental Monitoring and Assessment 182: 597-606.
40.   Rayment G.E. and Lyons D.J. 2011. Soil Chemical Methods: Australasia. pp. 512, vol.3. CSIRO publishing
41.   Remus R., Ruppel S., Jacob H.-J., Hecht-Buchholz C., and Merbach W. 2000. Colonization behaviour of two enterobacterial strains on cereals. Biology and Fertility of Soils 30: 550-557.
42.   Salehian A., Kasraian A., and Vessal M. 2017. The effect of cadmium on soil respiration, urease activity and nitrification in a vermicompost-enriched calcareous soil over time. Journal of Soil Biology 5: 137-147.
43.   Sandaa R.A., Torsvik V., Enger Q., Daae F.L., Castberg T., and Hahn D. 1999. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology 30: 237–251.
44.   Sarikhani M. and Malboobi M.a. 2010. Phytases: enzymology, molecular and biochemical characteristic and applications. Agricultural Biotecnology Journal 2: 13-40.
45.   SAS Institute Inc. 1990. Output delivery system: User's guide. SAS institute.
46.   Sethi S. and Gupta S. 2015. Responses of soil enzymes to different heavy metals. Biolife 3: 147-153.
47.   Sparks D.L., Page A., Helmke P., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., and Sumne M.E. 1996. Methods of Soil Analysis, part 3: Chemical Methods, vol.14. John Wiley & Sons, Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA
48.   Speir T. and Ross D. 1975. Effects of storage on the activities of protease, urease, phosphatase, and sulphatase in three soils under pasture. New Zealand Journal of Soil Science 18: 231-237.
49.   Suneja S., Narula N., Anand R., and Lakshminarayana K. 1996. Relationship ofAzotobacter chrooccum siderophores with nitrogen fixation. Folia Microbiologica 41: 154-158.
50.   Tabatabai M.A. and Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1: 301-307.
51.   Tabatabai M.A. and Bremner J.M. 1972. Assay of urease activity in soils. Soil Biology and Biochemistry, 4: 479-487.
52.   Tabatabai M.A. 1994.  Soil enzymes. pp. 775–833, in: Weaver R.W. (Ed.), Methods of soil analysis. Part 2. Microbiological and biochemical properties. . SSSA Book Ser. 5. SSSA, Madison, WI.
53.   Tanwar A., Aggarwal A., and Parkash V. 2014. Effect of bioinoculants and superphosphate fertilizer on the growth and yield of broccoli (Brassica oleracea L. var. italica Plenck). New Zealand Journal of Crop and Horticultural Science 42: 288-302.
54.   Tarafdar J.C. and Jungk A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils 3: 199-204.
55.   Tyler G., Pahlsson A.M.B., Bengtsson G.E., Baath E., and Tranvik L. 1989. Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water, Air, and Soil Pollution 47: 189-215.
56.   Walkley A. and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
57.   Wang Y., Fang L., Lin L., Luan T., and Tam N.F. 2013. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 13: 6365-6345.
58.   Wang Y.P., Shi J.Y., Wang H., Lin Q., Chen X.C., and Chen Y.X. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety 67: 75-81.
59.   Yan J., Quan G., and Ding C. 2013. Effects of the combined pollution of lead and cadmium on soil urease activity and nitrification. Procedia Environmental Sciences 18: 78-83.
60.   Yang Z.-x., Liu S.-q., Zheng D.-w., and Feng S.-d. 2006. Effects of cadium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences 18: 1135-1141.
61.   Youssef R.A. and Chino M. 1988. Development of a new Rhizobox system to study the nutrient status in the rhizosphere. Soil Science and Plant Nutrition 34: 461-465.
CAPTCHA Image