توسعه روش روندیابی هیدرولیکی معکوس سیل در خشک‌رودها با درنظر گرفتن میزان نفوذ یا نشت

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کاندیدای دکتری سازه‌های آبی گروه مهندسی آبیاری و آبادانی، دانشگاه تهران

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشگاه تهران

3 دکتری در مهندسی عمران، رئیس گروه تحقیقات کاربردی، شرکت آب منطقه‌ای خراسان رضوی

چکیده

در بسیاری موارد بعد از وقوع سیل به اطلاعاتی درباره مشخصات سیلاب در بالادست یک موقعیت مشخص نیاز است و ممکن است رودخانه در آن نقطه فاقد ایستگاه آب‌سنجی باشد یا داده­برداری در زمان سیلاب انجام نشده باشد. در روندیابی معکوس، محاسبات از مقطع پایین‌دست به صورت گام به گام به سمت مقطع بالادست رودخانه صورت می­گیرد و هیدروگراف ورودی بر اساس مشخصات هیدرولیکی رودخانه و هیدروگراف پایین­دست تولید می‌شود. در مطالعه حاضر روندیابی معکوس هیدرولیکی سیلاب به روش­های موج سینماتیک و موج دینامیک انجام شد؛ و اعمال مقدار نفوذ یا نشت که در خشک رودها بسیار مهم است، با جفت کردن رابطه نفوذ گرین- آمپت در معادله پیوستگی جریان انجام شده است. باوجود ماهیت ناپایدار مدل‌های روندیابی معکوس، به ویژه زمانی که عمق یا دبی اولیه جریان صفر است، با انتخاب پارامترهای وزنی مناسب ورودی به مدل، این فرایند با موفقیت انجام شد. قابلیت کاربرد مدل عددی توسعه یافته با استفاده از دو سری داده اندازه­گیری شده و واقعی بررسی شد و نتایج نشان داد مدل عددی پیشنهادی، دبی اوج هیدروگراف ورودی یا بالادست را تا دقت 99 درصد و زمان اوج را تا دقت 97 درصد بازیابی نموده است. این نتایج قابلیت استفاده از مدل­های روندیابی هیدرولیکی معکوس سیلاب در خشک­رودها را تایید می­نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of Reverse Hydraulic Flood Routing Method in Ephemeral Rivers Considering Infiltration Rate

نویسندگان [English]

  • A.A. Khosravi 1
  • A. Parvaresh Rizi 2
  • R. Barati 3
1 Candidate Department of Irrigation and Reclamation Engineering. College of Agriculture and Natural Resources. University of Tehran. Karaj, Iran
2 Associate Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
3 Ph.D. in Civil Engineering, Head of Applied Research Group, Khorasan Razavi Water Authority
چکیده [English]

Introduction: In many cases, after a flood, some information is needed about the flood characteristics at the upstream of a specific location where there is no hydrometric station on the river or flow discharge, and water surface level was not measured at the time of the flood. In reverse flood routing, calculations are performed from the downstream section step by step to the upstream section of the river and inlet hydrograph is produced based on river hydraulic characteristics and downstream hydrograph. During floods in rivers, the volume of floods gradually decreases due to infiltration into the bed and sides. This reduction in flood volume, called transmission losses, is significant in arid areas. Therefore, developed models for flood routing in seasonal rivers in arid and semi-arid regions should provide an appropriate estimate of transmission losses. In the routing process, the governing equations are combined with an equation to account for infiltration or seepage losses into the riverbed or canal. Then, by routing the flood along the interval and examining the resulting hydrographs at different points, the amount of transmission losses is determined. In the present study, which deals with the reverse hydraulic routing of floods in arid areas, the infiltration losses along the river estimated by the Green-Ampt relationship was considered in numerical models so as to perform reverse flood routing with appropriate accuracy and under hydraulic conditions of ephemeral rivers. To the best of our knowledge, so far no study has analyzed transmission losses in reverse hydraulic flood routing.
Materials and Methods: The equations governing gradual variable flows are known as the Saint-Venant equations, which include the continuity and the momentum equations. In hydraulic flow routing models, the complete form of the continuity equation is used, but the momentum equation is applied in various forms obtained by removing some components. The simplest hydraulic routing model is the kinematic wave model in which the components related to inertial forces and pressure force in the momentum equation are omitted. In the diffusion wave model, the components related to inertial forces are omitted, but the pressure force is taken into account and finally, in the dynamic wave model, the momentum equation is considered completely without simplification. In the present study, separate programs were prepared in MATLAB 2013 software for reverse hydraulic flood routing by Kinematic and dynamic wave methods. In these numerical models, by coupling the Green-Ampt infiltration equation with the continuity equation, the depth and flow rate in different places and times are calculated in the upstream direction of the flow.
Results and Discussion: In order to validate the results of the developed numerical models and to evaluate its applicability, a set of measured data known as Lane hydrograph and Bambeichi hydrograph was used. The results showed that both reverse hydraulic flood routing models produced the upstream hydrograph with appropriate accuracy. The results of the Bambeichi hydrograph data were more accurate than the Lane hydrograph due to its shorter length of the interval between upstream and downstream sections. For example, the peak discharge of inlet hydrograph calculated by the dynamic wave method for the Lane hydrograph data had an error of 7% compared to the observed value, while the error obtained for Bambeichi hydrograph data was 2%. Therefore, the accuracy of inverse routing models in estimating the volume of upstream hydrograph and consequently the amount of transmission losses was desirable especially for the Bambeichi hydrograph data. The highest error in estimating losses was 25% for the reverse kinematic model and the data related to the Lane hydrograph.
Between the two reverse hydraulic flood routing methods, the performance of the dynamic wave method was more accurate for the most numerical experiments, as the governing equations are completely solved in this method. This difference is more pronounced in the Lane hydrograph, which represents the actual conditions of an ephemeral river.
Conclusion: The accuracy of the developed numerical models was 90% in estimating the peak flow rate of the upstream hydrograph, and between 85% and 97% in estimating the time related to this discharge. The volume of the upstream hydrograph, which indicates the model performance in estimating the infiltration in the flow path, was also modeled with 75 to 98% accuracy. These results show that the numerical models simulate reverse flood routing with acceptable accuracy in ephemeral rivers, where transmission or seepage losses are significant. Due to different approaches in calculating infiltration losses, these methods can make differences for the hydrograph output of numerical models.
 

کلیدواژه‌ها [English]

  • Green-Ampt equation
  • Infiltration rate
  • Numerical model instability
  • Reverse routing
  • Step by step calculations
  • Akan A.O. 2006. Open Channel Hydraulics. Elsevier, Oxford, UK.
  • Badfar M., Barati R., Dogan E., and Tayfur G. 2021. Reverse flood routing in rivers using linear and nonlinear muskingum models. Journal of Hydrologic Engineering 26(6): 04021018.
  • Bahrami M., BoroomandNasab S., Naseri A.A., and Albaji M. 2010. Comparison of Muskingum-Cunge model and irrigation hydraulic models in estimation of furrow irrigation advance phase. Research on Crops 11(2): 541-544.
  • Bambeichi S. 2012. Estimation of transmission losses and development of an extended flood routing model for ephemeral rivers. PhD Thesis, Ferdowsi University of Mashhad, Iran. (In Persian with English abstract)
  • Bautista E., Clemmens A.J., and Strelkoff T. 1997. Comparison of numerical procedures for gate stroking. Journal of Irrigation and Drainage Engineering 123: 129-136.
  • Boroto R.A.J., and Gorgens A.H.M. 2003. Estimating transmission losses along the Limpopo river-an overview of alternative methods. Hydrology of the Mediterranean and Semi Arid Regions. IAHs Publication 278: 138-143.
  • Bruen M., and Dooge J. 2007. Harmonic analysis of the stability of reverse routing in channels . Hydrology and Earth System Sciences Discussions 11(1): 559-568.
  • Cataldo J.C., Behr C., and Montalto F.A. 2004. A summary of published reports of transmission losses in ephemeral streams in the U.S. A Report to the National Center for Housing and Environment. 38 PP.
  • Cheng L., Wang Z., Hu S., Wang Y., Jin J., and Zhou Y. 2015. Flood routing model incorporating intensive streambed infiltration. Science China Earth Sciences 58(5): 718-726.
  • Chow V.T., Maidment D.R., and Mays L.W. 1988. Applied Hydrology. McGraw-Hill International Editions.
  • Das A. 2009. Reverse stream flow routing by using Muskingum models. Sadhana 34(3): 483-499.
  • Dooge J., and Bruen M. 2005. Problems in reverse routing. Acta Geophysica Polonica 53(4): 357-371.
  • D’Oria M., and Tanda M.G. 2012. Reverse flow routing in open channels: A bayesian geostatistical approach. Journal of Hydrology 460-461: 130-135.
  • Eli R.N., Wiggert J. M., and Contractor D.N. 1974. Reverse flow routing by the implicit method. Water Resourcrs Research 10(3): 597-600.
  • Fread D.L. 1973. Effects of time step size in implicit dynamic routing. Water resources bulletin. American Water Resources Association 9(2): 338-351.
  • Ghobadian R., and Khalaj M. 2012. Estimating of unsteady seepage losses in Zangemar river using mathematical model. Iranian Journal of Irrigation and Drainage 3(6): 206-214. (In Persian with English abstract)
  • Heydari M., Oodi Sh., and Ahmadi Dehrashid F. 2019. Inverse flood routing based on diffusion wave model (A case study on Yuan river, China). Iranian Journal of Soil and Water Research 51(4): 1003-1012. (In Persian with English abstract)
  • Hosseini S.M., and Abrishami J. 2015. Open Channel Hydrsulics. Ferdowsi University of Mashhad Press. (In Persian)
  • Koussis A.D., Mazi K., Lykoudis S., and Argiriou A.A. 2012. Reverse flood routing with the inverted Muskingum storage routing scheme. Natural Hazards and Earth System Sciences 12(1): 217-227.
  • Lane L.J., Diskin M.H., and Reynard K.G. 1971. Input-output relationships for an ephemeral stream channel system. Journal of Hydrology 13: 22-40.
  • Mohamadi S., and Ghobadian R. 2013. Flood routing and estimating of transmission losses in ephemeral rivers (A case study: Gharesoo river). 2th National Conference on Flood Management and Engineering with an Urban Flood Approach, Tehran, Iran. (In Persian)
  • Mohamadi S., Ghobadian R., and Kashefipour S.M. 2015. Coupling Green-Ampt and Saint-Venant equations for estimating of transmission losses during flood routing in rivers. Iranian Journal of Irrigation Sciences and Engineering 39(1): 143-153. (In Persian with English abstract)
  • Morin E., Grodek T., Dahan O., Benito G., Kulls C., Jacoby Y., Langenhove G.V., Seely M., and Enzel Y. 2009. Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb river, Namibia. Journal of Hydrology 368: 262-275.
  • Noorduijn S.L., Shanafield M., Trigg M.A., Harrington G.A., Cook P.G., and Peeters L. 2014. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resources Research 50(2): 1474-1489.
  • Patowary S., and Sarma A.K. 2017. A modified hydrodynamic model for routing unsteady flow in a river having piedmont zone. Journal of Hydrology and Hydromechanics 65(1): 60-67.
  • Shamaa M.T., and Harkuri H.M. 2011. Implicit numerical scheme for regulating unsteady flow in open channel. 15th International Water Technology Conference. IWTC-15. Alexandria, Egypt.
  • Tavakkoli E., Zangoii M., and Barati R. 2021. Reverse flood routing in ephemeral rivers using a hydrological approach. 19th Iranian Hydraulic Conference, 15-16 Feb. 2021. Ferdowsi University of Mashhad, Iran. (In Persian)
  • Szymkiewicz R. 1993. Solution of inverse problem for the saint venant equations. Journal of Hydrology, 147: 105-120.
  • Szymkiewicz R. 2008. Application of the simplified models to inverse flood routing in Upper Narew river (Poland). Publications of the Institute of Geophysics, Polish Academy of Sciences, 405: 121-135.
  • Szymkiewicz R. 2010. Numerical modeling in open channel hydraulics. Springer. New York.

 

 

CAPTCHA Image