ارزیابی مدل‌های رگرسیونی و عصبی- فازی در برآورد هدایت هیدرولیکی اشباع خاک

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

مطالعه خصوصیات هیدرولیکی خاک از جمله هدایت هیدرولیکی اشباع خاک در بررسی‌های زیست محیطی ضروری می‌باشد. با وجود پژوهش‌های بی‌شمار که پیرامون اندازه‌گیری مستقیم هدایت هیدرولیکی اشباع صورت گرفته است، این روش‌ها هم‌چنان پر‌هزینه، زمان‌بر و تخصصی هستند. از این رو برآورد هدایت هیدرولیکی اشباع خاک با استفاده از روش‌هایی سریع، کم هزینه و با دقت قابل قبول مانند توابع انتقالی خاک توسعه یافته است. هدف اصلی این تحقیق، مقایسه و ارزیابی 11 تابع انتقالی رگرسیونی و سامانه استنتاج تطبیقی عصبی- فازی به منظور برآورد هدایت هیدرولیکی اشباع خاک می‌باشد. لذا آزمایشات مربوط به محاسبه هدایت هیدرولیکی اشباع و محاسبه خصوصیات فیزیکی خاک در 40 نقطه از شهرستان ارومیه صورت گرفت. در هر موقعیت انتخابی، چاهکی تا عمق 30 سانتی‌متر حفر گشت. هدایت هیدرولیکی اشباع خاک با روش پرمامتر گلف در محل هر چاهک اندازه‌گیری شد. خاک حاصل از حفر هر چاهک نیز برای تعیین ویژگی‌های زود‌یافت خاک در آزمایشگاه استفاده شد. نتایج نشان داد که در بین مدل‌های رگرسیونی موجود، مدل آیمرون و همکاران با کمترین مقدار خطا برای پارامترهای RMSE و MAE (174/0 و 028/0متر در روز) بهترین برآورد هدایت هیدرولیکی اشباع را در اراضی مورد مطالعه داشت. نتایج این تحقیق بر اهمیت کاربرد تخلخل مؤثر به عنوان یک پارامتر زودیافت مهم به منظور افزایش دقت توابع انتقالی رگرسیونی تأکید دارد. در شبکه استنتاج تطبیقی عصبی- فازی از میان 561 مدل با لایه‌های ورودی مختلف‏، پارامتر‌های درصد شن، سیلت، چگالی مخصوص ظاهری و چگالی مخصوص حقیقی به عنوان ورودی انتخاب شدند. در مدل عصبی- فازی ارائه شده در این تحقیق، مقادیر R2 و RMSE در مرحله آموزش برابر با 1 و 7-10×2/1 و در مرحله آزمون برابر با 98/0 و 0006/0 به دست آمد. مقایسه نتایج توابع رگرسیونی و مدل‌های عصبی- فازی بیانگر برتری سامانه عصبی- فازی نسبت به تابع رگرسیونی است. همچنین سیستم استنتاج عصبی- فازی قادر است در بافت‌های خاک مختلف قدرت برآورد خود را با دقت بالا حفظ نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

نویسندگان [English]

  • J. Behmanesh
  • E. Rezaie
University of Urmia
چکیده [English]

Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions.
sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

کلیدواژه‌ها [English]

  • Saturated Hydraulic Conductivity
  • Soil Physical Chracteristics
  • Adaptive Neuro- Fuzzy Inference System
1- افتخاریان ل.، تی تی دژ ا.، خاکباز ب.، سارنگ ا.، صادقیان پ.، مهین روستا ر. و نوار م. 1377. آزمایشگاه مکانیک خاک. 274 صفحه.
2- قربانی دشتکی ش. و همایی م. 1386. براورد پارامتر‌های برخی مدل‌های نفوذ آب به خاک با استفاده از توابع انتقالی، مجله آبیاری و زهکشی ایران 1 (1): 21-38.
3- کیا م. 1389. محاسبات نرم در MATLAB. انتشارات کیان رایانه سبز.
4- منهاج م.ب. 1381. مبانی شبکه‌های عصبی هوش محاسباتی. انتشارات دانشگاه صنعتی امیرکبیر. جلد اول.
5- نحوی نیا م.ج.، لیاقت ع.م. و پارسی‌نژاد م.‏ 1389. کاربرد مدل‌های تجربی و آماری در پیش‌بینی میزان نفوذ آب در آبیاری جویچه‌ای. نشریه آب و خاک. جلد 24. شماره 4. ص. 780-769.
6- یزدانی و.، قهرمان ب.، داوری ک. و فاضلی م. 1391. کاربرد بعد فراکتال اندازه ذرات خاک در براورد هدایت هیدرولیکی اشباع. نشریه آب و خاک. جلد 26. شماره 3. ص. 659-648.
7- Ahuja L.R., Naney J.W., Green P.E., and Nielsen D.R. 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci. Soc. Am. J. 48:699– 702.
8- Aimrun W., Amin M.S.M., and Eltaib S.M. 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 121:197–203.
9- Blake G.R. and Hartge K.H. 1986. Bulk Density. In: Klute, A. (ed.) Methods of soil Analysis. Part 1.2nd ed. Agron.Monogr. 9. ASA. Madison. WI. Pp. 363-375.
10- Brakensiek D.L., Rawls W.J., and Stephenson G.R. 1984. Modifiying SCS hydrologic soil groups and curve numbers for range land soils. ASAE paper no. PNR-84203T St. Jiseph, Mi.
11- Borgesen C.D., and Schaap M.G. 2005. Point and Parameter Pedotransfer Functions for Water Retention Predictions for Danish Soils. Geoderma 127:154–167.
12- Campbell G.S. 1985. Soil Physics with Basic Elsevior. New York.
13- Campbell G.S., and Shiozawa S. 1994. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. In: van Genuchten, M. Th., et al. (ed.), Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside, CA, p. 317−328.
14- Cosby B.J., Hornberger G.M., Glapp R.B., and Ginn T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil. Water Resour. Res.J, 20(6): 682-690.
15- Gee G.W., Or D. 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis, Part 4 SSSA Book Series No. 5. Soil Sci. Soc. Am., Madison, WI, pp. 255–293.
16- Hasebe M., and Nagayama Y. 2002. Reservoir Operation Using The Neural Network and Fuzzy System For Dam Control and Operation Support, Elsevier, Advances in Engineering Software 33:245-260.
17- Hun lee Do. 2005. Comparing the inverse parameter estimation approach with pedo- transfer function method for estimating soil hydraulic conductivity .Geoscience journal, 9(3):269- 276.
18- Jabro J.D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Trans. ASAE, 35 (2):557-560.
19- Koekkoek E.J.W., and Booltink H. 1999. Neural Network Models to Predict Soil Water Retention. Eur. J. Soil Sci. 50:489–495.
20- Merdun H., Cinar O., Meral R., and Apan M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90:108-116.
21- Mermoud A., and Xu D. 2006. Comparative analysis of three methods to generate soil hydraulic functions. Soil & Tillage Research, 87: 89-100.
22- Navabian M., Liaghat A.M., and Homaee M. 2004. Estimating soil saturated hydraulic conductivity using pedotransfer functions. J. Agric. Eng. Res. 4:16. 1-11.
23- Pachepsky Y.A., Timlin D., and Varallyay G. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil. Sci. Soc. Am. J., 60:727-733.
24- Puckett W.E., Dane J.H., and Hajek B.F. 1985. Physical and mineralogical data to determine soil hydraulic properties. Soil Sci. Soc. Am. J, 49: 831-836.
25- Saxton K.E., Rawls W.J., Romberger J.S., and Pependick R.I. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J, 50: 1031-1036.
26- Schaap M.G., Leij F.J., and Van Genuchten M.T. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil. Sci. Soc. Am. J., 62:847-855.
27- Shirazi M.A., Boersma L. 1984. A unifying quantitative analysis of soil texture.SoilSci. Soc. Am. J. 48: 142–147.
28- Wagner B., Tarnawski V.R., Hennings V., M¨uller U., Wessolek G., and Plagge R. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma. 102: 275–297.
29- Wösten J.H.M., Pachepsky Ya. A., and Rawls W.J. 2001. Pedo transfer functions: bridging gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251: 123-150.
30- Zeleke T.B., and Si B.C. 2005. Scaling Relationships between Saturated Hydraulic Conductivity and Soil Physical Properties. Soil Science Society of America Journal. 69:1691–1702.
CAPTCHA Image