Irrigation
H. Shirvani Ichi; M. Ghobadinia; negar nourmahnad; Seyed Hassan Tabatabaei
Abstract
Introduction: Nowadays, the use of effluent in irrigation and especially drip irrigation systems has increased. The findings uncovered that drip irrigation is assumed as the only method which is capable of overcoming specific problems caused by wastewater usage. In this study, the efficiency of sand ...
Read More
Introduction: Nowadays, the use of effluent in irrigation and especially drip irrigation systems has increased. The findings uncovered that drip irrigation is assumed as the only method which is capable of overcoming specific problems caused by wastewater usage. In this study, the efficiency of sand and geotextile filters with zeolite on wastewater properties and their application in the filtration of the drip irrigation system was investigated.
Materials and Methods: This study was conducted to investigate the changes in important chemical properties in the municipal wastewater of a university after passing through sand filters, geotextiles, and zeolites in the drip irrigation filtration system. A factorial experiment was performed in a completely randomized design with three replications. Treatments included sand filter (control-CTRL treatment), geotextile filter (G), sand filter with zeolite (SZ), and geotextile filter with zeolite (GZ). The sand used in this study was the usual silica sand which was in three sizes of 3-5, 5-8, and 8-12 mm. In order to remove any contamination and soil particles and increase the accuracy of the measurement of suspended solids in the effluent, the sands were washed several times with water before usage. The geotextiles used in this study had three types with weights of 300, 500, and 1000 grams per cubic meter. The zeolite used in this study was clinoptilolite modified with hydrochloric acid. The wastewater used in this study was obtained from the effluent of Shahrekord University. System flow rate, Pressure, nitrate, suspended solids, sodium, calcium, magnesium, electrical conductivity, effluent pH were measured before and after entering the filters at different hours. Statistical analysis was done by SAS software and the Duncan test was used to compare the means of the data.
Results and Discussion: The results showed that the sand-zeolite treatment had a good performance in terms of pressure and the geotextile-zeolite treatment was able to provide pressure for a short time. The amount of nitrate in the wastewater of the sand filter was not significantly different from the amount of inlet, but in other filters was significantly reduced. The amount of nitrate input of all treatments was 26 mg/l.The average output nitrate in the sand filter was about 25 and in the other filters was less than 20 mg/l. The average amount of suspended solids in the effluent was about 110 mg/l, while the average amount of suspended solids in the wastewater was reduced to less than 72 mg/l. The sand and sand-zeolite treatments increased the total amount of calcium and magnesium in the wastewater more than geotextile and geotextile-zeolite treatments, respectively. The average Ca + Mg of effluent in the total operating hours of the system was higher than the average input in all filters. The percentage of EC changes in total hours increased about 4% in sand and geotextile treatments and 14% in geotextile- zeolite and sand -zeolite filters. The highest percentage of pH changes was related to sand-zeolite filter, which reduced the pH of incoming wastewater by about 4.5%. After that, geotextile- zeolite filter reduced the pH of the incoming wastewater by 4%. The average pH of the effluent of all filters is lower than the average of their inlet.
Conclusion: Sand and geotextile filters alone cause pressure drop and dropper clogging. However, the sand-zeolite treatment has performed well in this regard. The geotextile-zeolite treatment has the potential to be used in terms of supplying the necessary pressure for a short period by applying special treatment measures before this filter. These conclusions are only in terms of pressure drop due to the ability of filters in practical use and do not refer to their ability to filter the parameters and provide the desired flow. All treatments, especially zeolite treatments, significantly reduced nitrate, and these filters can be used to reduce effluent nitrate in cases where the amount of nitrate is more than allowed. However, since the sand filter had no effect on nitrate reduction, the effluent must be treated for nitrate before using sand filters. The geotextile filter had a higher percentage of suspended solids removal at all hours. The addition of zeolites to both geotextile and sand base filters reduced their ability to treat suspended solids. Therefore, geotextile filters can be a good alternative to ordinary sand filters in terms of this parameter. All treatments increased Ca + Mg relative to the input. The sand- zeolite treatment reduced the pH of the incoming wastewater more than other treatments (about 4.5%). Also, desalination of salts from zeolite treatments increased the EC of effluent in the sand-zeolite and Geotextile- zeolite treatments. According to this study, the use of sand-zeolite in terms of reducing nitrate and suspended solid, increasing calcium and magnesium, and reducing pH and no pressure drop is recommended.
Fatemeh Fattahi-Naghani; Mahdi Ghobadinia; abdolrahman mohammadkhani; Mohamad reza Nori Emamzadeie
Abstract
Introduction: Change and decrease in atmospheric precipitation in recent years as well as increase in population and further demand for agriculture in the arid and semi-arid regions (such as Naghan) has led to a significant decrease in surface and groundwater resources. Therefore, achieving optimal utilization ...
Read More
Introduction: Change and decrease in atmospheric precipitation in recent years as well as increase in population and further demand for agriculture in the arid and semi-arid regions (such as Naghan) has led to a significant decrease in surface and groundwater resources. Therefore, achieving optimal utilization of water in agriculture, new irrigation systems has been considered to gain the most crop yield with less amount of water consumption. Also cultivated area can be expanded by these systems, containing lands with irregular topography, due to the high water distribution uniformity. Besides developing irrigation system, irrigation management is an important tool for increasing crop productivity. Researchers have shown that applying deficit irrigation (DI) under drip system, has led to improve the quality of grape yield, decrease water consumption and increase water efficiency. The aim of this study is to investigate the effect of irrigation system and water stress on water consumption, yield and physiological indices of grapes.
Materials and Methods: The study field was located in Naghan, Chaharmahal & Bakhtiari Province, Iran. Experiences were done during summer 2016, in a completely randomized block design, with four replications in a grapevine garden The treatments included: CTRL, Furrow irrigation as common method in the area (control), surface irrigation with 100% water requirement (SI100), surface irrigation with 60% water requirement(SI60), drip irrigation with 100% water requirement(DI100) and drip irrigation with 60% water requirement (DI100).At the beginning of the experiences, 20 vine trees were selected with average of 60 years old. The field was divided into blocks, and the treatments were applied, randomly. Then the blocks were set up for the surface and drip irrigation. As the next step, required water was collected in a reservoir to obtain constant and reliable amount of water. In the control treatment, irrigation schedule of the gardeners (custom of the region) were considered in which irrigation event was at the beginning of the season. Also, drip and surface irrigation treatments were according to the soil water deficit. At the end of the experiment, water use efficiency, product performance, RWC, number of cubes per cluster, the weight of the cube in the cluster, cluster length, the number of main branches of the cluster and also qualitative properties such as soluble solids (Brix), total acid and pH of grape juice were measured.
Results and Discussion: According to the results of qualitative traits, the amount of applied water significantly affected the grapes pH in the level of 5%. The lowest grapes pH was due to the control treatment and the highest to the surface irrigation 60%. Also, measuring total soluble solids (TSS) in grape indicated significant difference in 1% level which revealed that deficit and drip irrigation increased sugar in grapes and therefore quality of the crop. The results of quantitative traits showed the number of cubes in treatments had a significant difference at a probability level of 1%. Number of cubes in surface irrigation treatment 100% (SI100) had the highest value, while the quality of the crop was lower. The treatments differed significantly in weight of 100 cubes and the drip irrigation treatment 100% (DI100) did not have a significant difference with control treatment, while deficit irrigation resulted in reducing the crop weight. Relative water content of leaves (RWC) had the highest amount in the control treatment, while low water stress reduced this index. Wet and dry yields were highest in the control treatments (CTRL); while, the lowest amount was due to the low irrigation treatments of DI60 and SI60 with 19% and 34% reduction, respectively for the wet and dry yield. Drip irrigation with 100% water requirement (DI00) was not significantly different from the control treatment in most of the quality parameters, cluster and yield characteristics but had less water consumption and higher water use efficiency.
Conclusions: Regarding the conditions of the region and the reduction of water resources, an accurate and efficient plan for irrigation is needed. So, the common method of irrigating in the region was assessed, as well as new methods of applying drip system and deficit irrigation. The results of this study indicate that drip irrigation system with 100% water requirement has no significant difference with the conventional irrigation method in the region, on quality and quantity of the gape yield. However, applying the drip system reduced the water consumption by 40%, and increased efficiency. Hence, drip irrigation system is suggested to be replaced by the traditional system.
shekoofe najafabadi; mohammad reza Nori Emamzadeie; Mehdi Ghobadinia; Abdolrazagh Danesh shahraki
Abstract
Introduction: Water scarcity is the most important limiting factor in the production of crops in arid and semi-arid regions. Thus, actions for increasing the efficiency and productivity of farm water is inevitable. A large proportion of the water, used in irrigation, evaporates, so an effective solution ...
Read More
Introduction: Water scarcity is the most important limiting factor in the production of crops in arid and semi-arid regions. Thus, actions for increasing the efficiency and productivity of farm water is inevitable. A large proportion of the water, used in irrigation, evaporates, so an effective solution for conserving water is to control the evaporation on arable lands. Nowadays using mulch or plastic mulch is common and it makes efficient use of water in furrow irrigation possible by conserving and storing soil moisture. Mulch does not let dry air contact topsoil and it also prevents topsoil from solar irradiance and reduces evaporation and maintain soil moisture. Recent research in order to economize on water use and irrigation efficiency and water use efficiency has led. Thus, regarding the problem of water scarcity, the objective of this research is to investigate the effects of evaporation suppressing monolayers on the efficiency of water consumption and growth indices of seed corn single cross SC 704 in an arid and semi-arid region.
Materials and Methods: This research was conducted in Shahrekord University during 2015. The experimental design was randomized complete block design with 6 treatments and 3 replications. The treatments include control treatment (uncovering) and transparent plastic wrap, black plastic, cotton gunny and white and blue pp woven fabric. Planting and growing operations were conducted due to agronomic principles. Changes in soil moisture within the root-zone during the season were measured by using thetaprobe and all operations by measuring the amount of irrigation water used in all experimental plots of each treatment were applied separately using flow measurement and the amount and time of each irrigation was determined and applied based on MAD=50 by supplying required water.
Results and Discussion: The measurement results showed that variance analysis of relative water content (RWC) and water efficiency under the impact of different coverings had a significance difference with p-value of 0.01. Also the amount of the dry matter and harvest index of corn showed significance with p-value of 0.05. Results showed that mulch at all stages of measuring the impact of increasing the leaf relative water content it could originate from growing trend of air temperature during the period. Under these treatments the plants are expected to experience more desirable conditions regarding maintaining and distributing of soil moisture in comparison with other treatments and the indicator. The highest amount of dry matter calculated is for the blue pp woven fabric treatment that shows the ideal growth conditions and appropriate performance of the plant under the impact of this covering and the lowest amount is for the cotton gunny treatment. Leaf area index (LAI) is one of the important growth indices. In flowering (anthesis) stage, the maximum amount of LAI is 5.08 for the blue pp woven fabric treatment. The minimum amount of LAI is 2.5 for the cotton gunny treatment and it is because of There macroporous coating that weed growth has been hindering plant growth. On the basis of the hundred seed weight, the heaviest weight is 18.18 for the white plastic treatment and the lowest weight is 13.46 for the indicator treatment. The highest amount of harvesting index (HI) is 53.97 for the transparent plastic treatment and the lowest amount is 41.12 for the black plastic treatment.The corresponding amount is an increase of 32 percent compared to control treatment. The reason of reduction of HI is the reduction of seed performance than biological performance in water scarcity. One of the indices for evaluating irrigation management is water efficiency. The highest amount of water efficiency is 2.6 and 2.7 kg/m3for the blue pp woven fabric and white pp woven fabric covering and it reduces water wastage in form of evaporation and causes water conservation. And it protects the top soil from solar irradiance.
Conclusion: This research was conducted at Shahrekord University to investigate the effects of various coverings on water efficiency and corn seed performance. Using covering causes temperature growth in the soil under the covering and it also causes further and fast plant growth. It reduces evaporation from topsoil. As a result, it causes soil moisture to be invariable and because of lack of light under the coverings, photosynthesis is impossible, thus, weeds could not grow. Blue pp woven fabric of mulch to mulch increased 42% dry matter was cotton sack. Mulches effect of the corn harvest index showed a clear plastic mulch to increase 32 percent harvest index compared to the control. Mulches blue pp woven fabric, white pp woven fabric, cotton gunny, black plastic and transparent plastic, respectively, increases of 92, 85, 28, 14 and 78 percent of water use efficiency were compared to control.Therefore, plants under the impact of blue pp woven fabric and white pp woven fabric coverings access more water and nutrients than the indicator treatment, so water efficiency increases. Using coverings has conserved moisture more in the top layers of soil by reducing evaporation form topsoil.
Sayyedeh Maryam Mirabolghasemi; Mahdi Ghobadi Nia; ahmad reza ghasemi; mohammad reza Nori Emamzadeie
Abstract
Introduction: Rice is one of the cereals that are widely used food in the world as staple.Rice is the largest consumer of water among agricultural products.At the field level, rice receives up to 2–3 times more water per hectare than other irrigated crop for producing of one kilogram of rice.Accordingto ...
Read More
Introduction: Rice is one of the cereals that are widely used food in the world as staple.Rice is the largest consumer of water among agricultural products.At the field level, rice receives up to 2–3 times more water per hectare than other irrigated crop for producing of one kilogram of rice.Accordingto water resources limitation in Iran, According to water resources limitation in Iran, careful planning is essential to optimal use of water resources in agriculture as the largest consumer. One of the methods to reduce water consumption in rice cultivationis changing the traditional irrigation methods (flooding) to periodic irrigation. Change of management from traditional water-logging irrigation to unsaturated improves the irrigation water use efficiency. Due to water scarcity problems, the aim of this study was to evaluate controlled drainage and the impact of irrigation management on growth characteristics and yield components of rice in the arid and semi-arid.
Materials and Methods:To Considering the effect of water table level on water productivity in rice cultivation, the study was done in Shahrekord university. The experiments conducted in pots with 40 cm diameter and 45 cm hight. The experiment was arranged following a completely randomized design with four treatments (water table level) and five repetitions. The water table managements including: control water table 2 cm on the top of the soil (FI),the control water table 20 cm below the soil surface (CD20), control water table 36 cm below the soil surface (CD36) and Intermittent irrigation(AI). Tocontroll the water level, two tanks were used, one as stabilizer water table and another to measure the amount of water used. The Treatmentsares are completely water logging for a week, in second week treatments were applied. Sampled four times during the growing season was performed to determine the dry matter content of leaf, stem and leaf relative swelling and at the end of the growing season, the volume of water consumed, harvest index, the amount of grain produced and thousand grain weight was measured and recorded. The data obtained were analyzed using SAS software and LSD test was performed for comparison of means.
Results and Discussion:The results showed reduced yield treatments for CD20, CD36 and AI for each unit reduction in water consumption respectively as much 0.36, 0.46 and 0.38 units. Also results showed irrigation management caused significantly decrease in swelling relative only in the first and Second measuring stages respectively at the 5 percent level and in the fourth measuring stages at 1 percent level. Dry matter productive also was reduced under irrigation management in the Second and fourth measuring stages respectively in 1st and 3rd measuring stages at the 5 percent level. The impacts of irrigation management are no statistically significant on the rice harvest index and thousand grain weights but water consumption was reduced in CD20, CD36 and AI. Resulted to increment 5 percent water use efficiency based on performance and a significant increase 1 percent in the efficiency of water use was based on biomass. The highest and lowest harvses index belongs to FI (39.1) and CD36 (35.4) respectly. The highest and lowest thousand grain weights belong to FI (1247 kg/ha) and CD36 (1101 kg/ha) respectly.
Conclusions:High water Stress causes roots gone to sleep and their growth will slow after re-watering. Water scarcity is not only the hinder root growth but causes the root fuzzy and reduce its ability to absorb substances. The results showed that water reduction, a significant decrease in grain yield not occurred, Lack significant differences in grain yield mean that the water supply was adequate at all levels and in none of irrigation regimes, the plant was not affected by water stress and plant roots grown have enough at critical stages that needs greater water and has access to available water at greater depths. Results showed that T2 (control water table level at 20 cm below surface of soil) for each unit reduction in water consumption, 0.36 units reduces seed productionand 16% reduction in the amount of dry matter, That these lowest values are in the between treatments. With this irrigation management and reduce water consumption by 23% compared to control treatment area under cultivation can increased by as much as 30% and the grain production increase from 3424 to 4210 Kg per hectare.
S.S. Nurbakhsh; M. Ghobadinia; A. Danesh-Shahraki; mohammad reza Nori Emamzadeie; R. Fatahi
Abstract
Introduction: Nowadays, due to lack of water resources and increasing demand for water, agricultural water planning issues need further consideration. With proper planning and determination of irrigation depth and time, the effects of stress and yield loss on the plants are reduced. Irrigation scheduling ...
Read More
Introduction: Nowadays, due to lack of water resources and increasing demand for water, agricultural water planning issues need further consideration. With proper planning and determination of irrigation depth and time, the effects of stress and yield loss on the plants are reduced. Irrigation scheduling is one of the most important factors in crop’s quality and quantity. The main objective of irrigation scheduling is to control crop’s water conditions in order to achieve its optimum yield level. So irrigation timing is the vital factor on which crop water stress and eventually yield's level are dependent upon. Moreover, irrigation timing is used in irrigation scheduling. The aim of this study was to evaluate the effect of irrigation time on water consumption, water use efficiency and yield of beans.
Materials and Methods: In order to observe the effect of the amount and the time of the irrigation on water consumption, yields rate and water use efficiency, the current research was carried out at the University of Shahrekord during the summer of 2012. The experiment was done as a completely randomized design with 4 repetitions consisting of irrigation time and the amount of irrigation in 4 and 2 levels (at 6, 8, 14 and 18) and (deficit irrigation, full irrigation), respectively. Beans seeds were planted in 32 similar vases with a diameter of 45 cm and height of 60 cm, in each experiment. Treatments were begun after 37 days from planting. Treatments were irrigated when the average moisture in the root zone was equal to the lower border of readily available water of full irrigation. At the end of the experiments, plants were completely harvested. Then the plant’s height, number of branches, numbers of pods per plant, pod and seed weight were measured.
Results and Discussion: Results showed that irrigating at different times during the day influenced water use efficiency, water consumption, seeds yield and number of pods in the bush. The water consumption was affected by irrigation time. Among full irrigation treatments, irrigation at 2 p.m. and 6 a.m. had the highest and lowest water consumption, respectively. The total amount of water used in irrigation at 8 a.m., 2:00 p.m. and 6 p.m. compared to 6:00 a.m. was increased by1.6, 9.5 and 4.1 percent, respectively. The results showed that irrigation at 2:00 p.m., caused a significant reduction in yield. Moreover, water use efficiency in 6 a.m. treatments had increased 18.5 percent more than that of the 2:00 p.m. irrigation treatment. The time of irrigation did not have a meaningful effect on bush height, the number of minor branches, the pod's length. The effect of the amount of irrigation water was meaningful on bush height, number of minor branches, seeds yield, the number of pods in the bush, pods length and seed weight. Seed yield at 8:00 a.m., 2:00 p.m. and 6:00 p.m. treatments has shown 0.29, 17.1 and 7.6 percent decrease in comparison with 6:00 a.m. irrigation treatment, respectively. Moreover, 100-seed weights were significantly affected by the irrigation time. The maximum and minimum weights of 100-seed weights were obtained at 6:00 a.m. and 6:00 p.m. irrigation, respectively. Analysis of variance showed that the number of pods per plant was affected by irrigation time. The maximum number of pods per plant was 101 which belong to the 6:00 a.m. treatment. In this experiment in the case of irrigation at 2:00 p.m., the number of pods per plant was significantly decreased in full and deficit irrigation. The results showed that although the irrigation frequency was the same, irrigation at maximum evapo-transpiration caused the plant to be under stress and the yield was reduced. In other word, it can be said that time of irrigation had no meaningful effect on the appearance and shape of the plant while it was effective in terms of the yield. Overall assessments showed that maximum of the measured features were obtained in the case of 6:00 a.m. treatment.
Conclusion: The results showed that irrigation at different times of the day and the applied water stress, reduced water use efficiency. These caused traits such as plant height; number of branches; number of pods per plant; pod and seed weight to be affected by the irrigation depth. Based on the results of this experiment it can be stated that, when there is no limit of water supply, it is recommended to irrigate in the early morning, before the steep slope of the temperature rise. However, in the situations with water shortage problems, is better to manage the water and the product.
Keywords: Bean, Deficit irrigation, Irrigation time, Water use efficiency
M. Hajhashemkhani; M. Ghobadi Nia; Seyed Hassan Tabatabaei; A. Hosseinpour; S. Houshmand
Abstract
Recently, wastewater is one of the water resources for irrigation due to the scarcity of water resources. In this regard, using adsorbents such as zeolites is recommended to improve the characteristics of the wastewater. Although the results show that natural zeolite decrease amount of pollutions but ...
Read More
Recently, wastewater is one of the water resources for irrigation due to the scarcity of water resources. In this regard, using adsorbents such as zeolites is recommended to improve the characteristics of the wastewater. Although the results show that natural zeolite decrease amount of pollutions but at the same time decreases the permeability of the soil, which could adversely affect the soil. This study was done in 2012 at the Shahrekord University, 27 PVC columns were used to study the effect of modified zeolite particles on permeability and quality of the wastewater. The experiment consisted of two factors the type of the microzeolite (natural zeolite, modified zeolite) and application procedure of the micro zeolite (mixed, layer) with three replications and in total had 7 treated. Injection of wastewater into the soil was through waterlogging and repeated fifteen times with a weekly frequency. Volume of wastewater used in each injection is equal "nv". In frequency injections of 1,3,5,7,11,15 infiltration was measured using Falling Heads. The results showed that treatment of modified zeolite included mixed, middle layer and layer on the surface had the highest infiltration rate respectively and treatment with natural zeolite included mixed, middle layer, layer on the surface had lowest infiltration rate. Further modified treatments decreased Ca effluent rate 111% with respect to natural Zeolite and therefore caused modified treatments to decrease SAR amount 45% with respect to control treatments and 132% with respect to natural zeolite.
M. Ghobadi Nia; H. Rahimi; E. Flavia; T. Sohrabi; A.A. Pourbabaee; U. Vasconcelos
Abstract
Abstract
A previous study on agricultural drains in Khuzestan province of Iran has indicated that carbonate calcium is the main component of the deposited salts in drainage envelops. To investigate the process of precipitation of carbonate calcium under different conditions including chemical, bio-chemical, ...
Read More
Abstract
A previous study on agricultural drains in Khuzestan province of Iran has indicated that carbonate calcium is the main component of the deposited salts in drainage envelops. To investigate the process of precipitation of carbonate calcium under different conditions including chemical, bio-chemical, aerobic and an-aerobic, a through laboratory investigation on geotextile drain envelop was conducted. The results of the studies showed that activity of the micro-organisms in aerobic conditions causes an increase in the bicarbonate content and consequently, increase in the pH of the medium. Any increase in pH would intensify the precipitation of carbonate calcium. The results also indicated that due to the activity of micro-organisms, more than 90% of existing calcium would be precipitated. While in a chemical environment, only 30% of existing calcium would precipitate. Thus, in a biochemical environment, micro-organisms would cause more calcium to be deposited. The results also indicated that the activity of the bacteria would cause formation of bio-films which in turn would provide a more suitable environment for precipitation of salts. By intensifying deposition of salts, there is higher potential for clogging of the drainage envelops including geotextile filters.
Keywords: Agricultural Drain, Calcium Carbonate, Drainage Envelope, Geotextile, Aerobic and An-aerobic, biofilm