narges javidan; Abdolreza Bahremand
Abstract
Introduction: Flood routing is a procedure to calculate flood stage and water depth along a river or to estimate flood hydrograph at river downstream or at reservoir outlets using the upstream hydrography . In river basins, excess rainfall is routed to the basin outlet using flow routing techniques to ...
Read More
Introduction: Flood routing is a procedure to calculate flood stage and water depth along a river or to estimate flood hydrograph at river downstream or at reservoir outlets using the upstream hydrography . In river basins, excess rainfall is routed to the basin outlet using flow routing techniques to generate flow hydrograph.
A GIS-based distributed hydrological model, Wet Spa, has been under development suitable for flood prediction and watershed management on a catchment scale. The model predicts outflow hydrographs at the basin outlet or at any converging point in the watershed, and it does so in a user-specified time step. The model is physically based, spatially distributed and time-continuous, and simulates hydrological processes of precipitation, snowmelt, interception, depression, surface runoff, infiltration, evapotranspiration, percolation, interflow, groundwater flow, etc. continuously both in time and space, for which the water and energy balance are maintained on each raster cell. Surface runoff is produced using a modified coefficient method based on the cellular characteristics of slope, land use, and soil type, and allowed to vary with soil moisture, rainfall intensity and storm duration. Interflow is computed based on the Darcy’s law and the kinematic approximation as a function of the effective hydraulic conductivity and the hydraulic gradient, while groundwater flow is estimated with a linear reservoir method on a small subcatchment scale as a function of groundwater storage and a recession coefficient. Special emphasis is given to the overland flow and channel flow routing using the method of linear diffusive wave approximation, which is capable to predict flow discharge at any converging point downstream by a unit response function. The model accounts for spatially distributed hydrological and geophysical characteristics of the catchment.
Determination of the river flow hydrograph is a main target in hydrology. Hydrological modeling deals with calculation of watershed hydrograph using hydro-meteorological information and terrain data, and processes of transforming rainfall into a flood hydrograph and the translation of hydrographs throughout a watershed. Flow routing subjects hydrography transformation and translation throughout a river basin. The Wet Spa model used in this study is a simple grid-based distributed runoff and water balance simulation model that runs on an hourly time step. It predicts hourly overland flow occurring at any point in a watershed, hydrography at the outlet, and provides spatially distributed hydrologic characteristics in the basin, in which all hydrologic processes are simulated within a GIS framework (Bahremand, 2007). The Wet Spa model was originally developed by Wang et al. (1997) and adapted for flood prediction by De Smedt et al. (2000) and Liu et al. (2003).
Materials and Methods: The outlet is accomplished using the first passage time response function based on the mean and variance of the flow time distribution, which is derived from the advection–dispersion transport equation. The flow velocity is location dependent and calculated in each cell by the Manning equation based on the local slope, roughness coefficient and hydraulic radius. The hydraulic radius is determined according to the geophysical properties of the catchment and the flood frequency. The total direct runoff at the basin outlet is obtained by superimposing all contributions from every grid cell.
The routing of overland flow and channel flow is implemented by the method of the diffusive wave approximation. This method has been used in some recent GIS-based flood models (Fortin et al., 2001; Olivera and Maidment, 1999). Liu et al 2003 has presented the flow routing method of the WetSpa model in detail. A two-parameter response function, based on the average flow time and the standard deviation of the flow time, is proposed in this study. The flow time and its variance are determined by the local slope, surface roughness and the hydraulic radius for each grid cell. The flow path response function at the outlet of the catchment or any other downstream convergence point is calculated by convoluting the responses of all cells located within the drainage area in the form of the probability density function (PDF) of the first passage time distribution. This routing response serves as an instantaneous unit hydrograph and the total discharge is obtained by a convolution integral of the flow response from all generated spatially distributed runoff.
Starting from the continuity equation and the St.Venant momentum equation, assuming the one-dimensional unsteady flow, and neglecting the inertial terms and the lateral inflow to the flow element, the flow process can be modeled by the diffusive wave equation (Cunge et al., 1980)
In this study, flood routing is done as the main part of flow simulation of the distributed hydrological Wet Spa model in the Ziarat watershed. In order to execute the model, hourly hydrometeorological data for a period of four years (2007-2010) including rainfall, evapotranspiration, temperature, and discharge are used as inputs. Additionally, three main maps of the digital elevation model, soil map (texture), and land use are also applied and converted to digital formats. The result of the simulation shows a good agreement between the simulated hydrography and the observed one. The routing of overland flow and channel flow is implemented by the method of the diffusive wave approximation.
Results and Disscasion: The Wet Spa model has been applied in several studies, e.g. the Barebeek catchment in Belgium, the Alzette river basin in Luxembourg, the Hornad watershed in Slovakia, In this study, flood routing is done as the main part of flow simulation of the distributed hydrological WetSpa model in the Ziarat watershed. In order to execute the model, hourly hydrometeorological data for a period of four years (2007-2010) including rainfall, evapotranspiration, temperature, and discharge are used as inputs. Additionally, three main maps of the digital elevation model, soil map (texture), and landuse are also applied and converted to digital formats. The result of the simulation shows a good agreement between the simulated hydrography and the observed one. The routing of overland flow and channel flow is implemented by the method of the diffusive wave approximation. A sensitivity test shows that the parameter of flood frequency and the channel roughness coefficient have a large influence on the outflow hydrography and the calculated watershed unit hydrograph, while the threshold of minimum slope and the threshold of drainage area in delineating channel networks have a marginal effect.
zahra nameghi
Abstract
Simulation of rainfall-runoff process in the watershed has a significant importance from various points of view, such as better understanding of hydrological issues, water resources management, river engineering, flood control structures and flood storage. Therefore in this study, the river flow and ...
Read More
Simulation of rainfall-runoff process in the watershed has a significant importance from various points of view, such as better understanding of hydrological issues, water resources management, river engineering, flood control structures and flood storage. Therefore in this study, the river flow and surface runoff are simulated using the distributed hydrological model, WetSpa. In the WetSpa model runoff process of the basin is simulated using diffusive wave approximation method based on gradient, flow rate and distributed features along the flow routes. Atrak watershed with about 11639 km2 area is one of the largest watersheds of Iran and average annual precipitation is about 283mm. Meteorological data from 1383 to 1390 consisting of rainfall in 25 stations, temperature and evaporation measurements in 5 stations were used as model input data. To run the model three base maps including DEM, land use and soil type with cell size of 100m were provided. Simulation results show a relatively good agreement between calculated hydrographs and measurements at the basin outlet. The model estimates daily hydrographs, with an accuracy of over 60% and 53% based on Nash-Sutcliff criterion, for calibration and validation periods, respectively. And based on Nash-Sutcliff criterion adapted for the maximum flow rate, the model accuracy was evaluated as 77%. According to model output and hydrological factors with spatial distribution at each time step, the model has the ability to analyze topographic effects, soil texture and land use in hydrological behavior of basin.
Z. Parisay; V. Sheikh; M. Ownegh; A. Bahremand
Abstract
Flood is one of the devastating phenomena which every year incurs casualties and property damages. Flood zonation is an efficient technique for flood management. The main goal of this research is flood hazard and risk zonation along a 21 km reach of the Gorganrud river in Bustan dam watershed considering ...
Read More
Flood is one of the devastating phenomena which every year incurs casualties and property damages. Flood zonation is an efficient technique for flood management. The main goal of this research is flood hazard and risk zonation along a 21 km reach of the Gorganrud river in Bustan dam watershed considering two conditions: present landuse condition and scenario planning. To this end a combination of a hydrologic model (the distributed HEC-HMS with the Mod-Clark transform option) and a hydraulic model (HEC-RAS) were used. The required inputs to run the Mod-Clarck module of HEC-HMS are gridded files of river basin, curve number and rainfall with the SHG coordinate system and DSS format. In this research the input files were prepared using the Watershed Modeling System (WMS) at cell size of 200 m. Since the Mod-Clark method requires rainfall data as radar format (NEXRAD), the distributed rainfall mapseries with time intervals of 15 minutes prepared within the PCRaster GIS system were converted to the DSS format using the asc2dss package. also the curve number map was converted to the DSS format using HEC-GeoHMS. Then, these DSS files were substituted with rainfall and curve number maps within the WMS. After calibration and validation, model was run for return periods of 2, 5, 10, 25, 50, 100 and 200 years, in two conditions of current landuse and scenario planning. The simulated peak discharge data, geometric parameters of river and cross section (at 316 locations) data prepared by the HEC-GeoRAS software and roughness coefficients data, were used by the HEC-RAS software to simulate the hydraulic behavior of the river and flood inundation area maps were produced using GIS. The results of the evaluation showed that in addition to the percent error in peak flow, less than 3.2%, the model has a good performance in peak flow simulation, but is not successful in volume estimation. The results of flood zones revealed that from the total area in floodplain with return period of 200 years, 96.94% of the area is exposed to the return period of 25 years floods, and a main part of damages go to the floodplains which are under a return period of 25 years floods.