Hassan Mir; Ahmad Gholamalizadeh Ahangar; Noshin Mir
Abstract
Introduction: Increasing the production rate became considerable for farmers in various ways. Modern technologies, such as biotechnology and nanotechnology could play an important role in increasing the production and improving the quality of agricultural products. Research into the direct application ...
Read More
Introduction: Increasing the production rate became considerable for farmers in various ways. Modern technologies, such as biotechnology and nanotechnology could play an important role in increasing the production and improving the quality of agricultural products. Research into the direct application of nanotechnology into agriculture is set to increase in the future. One of the most remarkable plant growth factors is its nutrition. Titanium plays a beneficial role in increasing and stimulating plants growth. Titanium's usage in nutrition solution or spraying on the plant will increase the biomass and growth of different plant species. With respect to Nano technology enhancement in recent years the application of nano-particles is increasing. All the positive effects of titanium dioxide depend on its ability to absorb light and the main disadvantages of this combination are the low ability to absorb visible light from the sun and absorbing more UV light. It is possible to improve its effectiveness due to the high proportion of sunlight in the visible range by absorbing the visible light of nano-particles. To achieve this goal a layer of color will be added on the surface of the nanoparticles, which is called the nanoparticle sensitization by color. Due to the absorption of light by titanium dioxide nano-particles, especially ultraviolet radiation, it is assumed that the creation of a color layer on these nano-particles increases the antibacterial and fungal properties of these nanoparticles. As a result, the goal of this experiment is to investigate the possible increase in light absorption and increase the yield of the sorghum plant by titanium dioxide nano-particles of Dye-Sensitized, which, some of the parameters were investigated by treating the seeds of the plant with both nanoparticles.
Materials and Methods: This research was performed in three replications in a completely randomized design with factorial arrangement and with 12 treatments containing 6 concentrations of titanium dioxide nano-particles (0, 1, 10, 50, 100 and 500 mg.L-1), 6 concentration of titanium dioxide nanoparticles of Dye-Sensitized (0, 1, 10, 50, 100 and 500 mg.L-1). Fresh and dry weight of plants, plant nutrients content (Phosphorus, Potassium, Manganese, and Zinc), activity of ascorbate peroxidase and guaiacol peroxidase and chlorophyll content parameters have been measured.
Discussion and Results: The saffron compounds have significant peaks in the UV-Vis spectrum. The spectrum of titanium dioxide nanoparticles has a specific peak in the ultraviolet range (Area between wavelengths of 200-400 nm) however there is no trace of absorption in visible areas. The spectrum of the saffron solution has two identifiable peaks at 328 and 258 nm, and a double peak at 466 and 442 nm. The observed peak at 258 nm is related to the combination of Picrocrocin, which is the same colorless bitter substance found in saffron. The dual peaks range between 400-500 nm and the peak appearing at 328 nm are related to the carotenoids found in saffron. Crocin also has similar peaks which are likely to be overlapping with trans-isomeric peaks and not separable. The Spectrum of titanium dioxide nano-particles covered with saffron color also represents two peaks at 322 and 260 nm, and a peak at 430 nm with a specific shoulder at 458 nm. What comes from the comparison of two saffron peaks alone and saffron coated on titanium dioxide nano-particles is that the Crocin molecules contained in saffron are attached to nano-particles. According to the results, dry weight and enzymatic activity of Guaiacol peroxide and Ascorbate peroxide showed a significant increase compared to the control and had the highest performance respectively at concentrations of 10, 100 and 500 mg.L-1of titanium dioxide nano-particles of Dye-Sensitized, and showed 1.25, 2.7 and 3.28 fold. The amount of plant nutrients such as phosphorus, potassium, manganese, and zinc at concentrations of 10, 100, 500 and 50 mg.L-1titanium dioxide nanoparticles of Dye-Sensitized had a 72.34, 42.85, 73.95 and 28.17 percent increase, except fresh weight and chlorophyll a. Chlorophyll a at a concentration of 500 mg.L-1of both nano-particles showed the highest amount, but the fresh weight, unlike other parameters, showed the best performance with normal nanoparticles.
Conclusion: It seems that these nano-particles, by coloring, intensify light-related reactions compared to normal nano-particles, which results in better performance.
Sabireh Golshahi; Ahmad Gholamalizadeh Ahangar; Noshin Mir; Maryam Ghorbani
Abstract
Introduction: First and the most important requirement of human being is food and food supply, which is directly, or indirectly associated with agriculture. Iron is a critical element for the growth, expansion and survival of the plant, since multiple metabolic and a physiological process is essential ...
Read More
Introduction: First and the most important requirement of human being is food and food supply, which is directly, or indirectly associated with agriculture. Iron is a critical element for the growth, expansion and survival of the plant, since multiple metabolic and a physiological process is essential for the proper functioning. Agricultural areas in the world have a high pH in soil, which in turn decreases iron absorption by plants. Iron deficiency depending on many soil and environmental factors as well as plant genetic that in turns can decrease the yield and product quality. One method of overcome iron deficiency in plants is foliar application. A foliar application of iron fertilizer in agriculture is the common practice, especially in soils that accompanied with iron deficiency. The proper use of various types of fertilizers is the main solution to improve and maintaining soil fertility and increase crop production. The objective of this study is to evaluate the effect of foliar application of iron sources on growth parameters, concentration and absorption of iron in shoot and root and enzymes activity of catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) on forage sorghum plant to determine the best combination of iron fertilizer.
Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in greenhouse condition on forage sorghum (Sorghum Bicolor (L.) Moench) varieties of speed feed. The treatments included two levels of iron (0.25 and 0.5 g Fe.L-1 with Control (C)) from nine iron sources (Iron chelate (F1), Iron sulfate (F2), Iron oxide nanoparticles (F3), Monodisperse iron oxide nanoparticles (F4), Green nano iron (F5), Polymeric iron chelate (F6), Polymeric iron sulfate (F7), Polymeric iron oxide nanoparticles (F8) and Polymeric monodisperse iron oxide nanoparticles (F9)). The soil was obtained from educational and research greenhouses of Zabol university and after air drying and sieving passing 2 mm, some physical and chemical characteristics of soil such as texture, pH, electrical conductivity, cations exchange capacity, calcium carbonate equivalent, organic matter, total nitrogen contents, available P contents, available K contents and available Fe contents was measurement. Spraying of iron resources performed in two stages (4 leaf and the two weeks after first spraying). After two months of planting, the shoot cut from the surface of the soil and roots of the plants collected. Some parameters such as shoot and root dry weight, chlorophyll a, b and carotenoids, iron concentration in shoot and root, iron absorption in shoot and root, and activity of the enzyme (catalase, ascorbate peroxidase, guaiacol peroxidase) was measured. The experimental data examined using Excel and SAS 9.4 statistical software and the averages were compared using Duncan’s Multiple Range Tests at 0.01 and 0.05 significance level.
Results: Results analysis of variance indicated that the interaction effects between iron resources and iron level on the dry weight of shoots and roots, chlorophyll a and b, iron absorption in shoots and roots, enzymes guaiacol peroxidase. Ascorbate peroxidase and catalase were significant at the level of 5 percent and iron concentrations in shoots and roots were significant at the level of 1 percent. The carotenoid content in leaves in the simple effects of iron resources was significant at the level of 5 percent. According to the results, foliar application of treatments on dry weight of shoots and roots, Fe concentration and Fe absorption by shoots and roots, chlorophyll a, b and the enzyme activity of APX, GPOX in addition CAT were significantly increased compared to Control. Foliar application at 0.25 g Fe.L-1, chlorophyll b in the treatment of monodisperse iron oxide nanoparticles, Fe concentration and Fe absorption in the shoots in treatments of polymeric iron sulfate and polymeric iron chelate, respectively. Fe concentration and Fe absorption in the roots in treatment of polymeric monodisperse iron oxide nanoparticles and APX activity in iron chelate treatment increased significantly compared to control. At level of 0.5 g Fe.L-1, dry weight of shoots in the treatment of iron chelate, dry weight of roots and CAT enzyme in the treatment of green nano iron, chlorophyll a in the treatment of polymeric iron chelate and GPOX enzyme in the treatment of monodisperse iron oxide nanoparticles were compared with the control increased significantly. The simple effects of iron sources indicated that the highest level of carotenoids observed in the foliar application of polymeric iron chelate.